Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Chemical...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Chemical Engineering
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2020
Data sources: HAL INRAE
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two complementary methods for the computational modeling of cleaning processes in food industry

Authors: Deponte, Hannes; Tonda, Alberto; Gottschalk, Nathalie; Bouvier, Laurent; Delaplace, Guillaume; Augustin, Wolfgang; Scholl, Stephan;

Two complementary methods for the computational modeling of cleaning processes in food industry

Abstract

Abstract Insufficient cleaning in the food industry can create serious hygienic risks. However, when attempting to avoid these risks, food-processing plants frequently tend to clean for too long, at extremely high temperatures, or with too many chemicals, resulting in high cleaning costs and severe environmental impacts. Therefore, the optimization of cleaning processes in the food industry has significant economic and ecological potential. Unfortunately, in-situ assessments of cleaning processes are difficult, and the multitude of different cleaning situations complicates the definition of a comprehensive approach. In this study, two methodological approaches for the comprehensive modeling of cleaning processes are introduced. The resulting models facilitate comparisons of different cleaning processes and they can be scaled up for processes with similar conditions, using cleaning time as a response. A dimensional analysis is performed to obtain general results and to allow transfer of the approaches to other cleaning situations. The models are established according to the statistical rules for the deduction of multiple regression equations for the prediction of the response based on the input parameters. The terms of the model equation are confirmed with a significance analysis. A machine learning approach is also used to create model equations with symbolic regression. Both methods and the obtained model equations are validated. The two applied approaches reveal similar significant terms and models. Significant dimensionless numbers are the Reynolds number, the density number that describes the ratio of the density of the soil to the density of the cleaning agent, and the soil number, which is a new dimensionless number that characterizes the properties of food soils. The methodology of both approaches is transparent; therefore, the resulting equations can be compared and similarities are found. Both methods are deemed applicable for the computational modeling of cleaning processes in food industry.

Keywords

[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG], [CHIM] Chemical Sciences, [CHIM]Chemical Sciences, [INFO]Computer Science [cs], [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [INFO] Computer Science [cs]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!