doi: 10.15468/dl.aq27ff
A dataset containing 331 species occurrences available in GBIF matching the query: { "TaxonKey" : [ "is Lepidium jaredii Brandegee" ] } The dataset includes 331 records from 25 constituent datasets; see https://api.gbif.org/v1/occurrence/download/0152203-220831081235567/datasets/export for details. Data from some individual datasets included in this download may be licensed under less restrictive terms.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.aq27ff&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.aq27ff&type=result"></script>');
-->
</script>
doi: 10.15468/dl.0bhbjw
A dataset containing 1256394 species occurrences available in GBIF matching the query: { "and" : [ "TaxonKey is one of (Sartidia isaloensis Voronts., Razanats. & Besnard, Helleborus thibetanus Franch., Oropetium aristatum (Stapf) Pilg., Urochloa brizantha (A.Rich.) R.D.Webster, Dendrobium chrysotoxum Lindl., Stewartia crassifolia (S.Z.Yan) J.Li & T.L.Ming, Lathyrus ochroleucus Hook., Hydrangea petiolaris Siebold & Zucc., Drosophyllum lusitanicum (L.) Link, Hippophae rhamnoides L., Sporobolus maritimus (Curtis) P.M.Peterson & Saarela, Dendrosenecio kilimanjari subsp. cottonii (Hutch. & G.Taylor) E.B.Knox, Indigofera tinctoria L., Iochroma loxense (Kunth) Miers, Psilotum nudum (L.) P.Beauv., Adenanthera microsperma Teijsm. & Binn., Dioscorea bulbifera L., Oxychloris scariosa (F.Muell.) Lazarides, Scrophularia takesimensis Nakai, Nicotiana otophora Griseb., Nymphaea jamesoniana Planch., Lathraea squamaria L., Populus davidiana Dode, Aphananthe aspera (Thunb.) Planch., Averrhoa carambola L., Zanthoxylum piperitum (L.) DC., Diplostephium oblongifolium Cuatrec., Opisthocentra clidemioides Hook.fil., Lycium barbarum L., Androsace bulleyana Forrest, Gentiana obconica T.N.Ho, Aconitum brachypodum Diels, Lilium pardanthinum (Franch.) Y.D.Gao, Epipactis purpurata Sm., Pseudoroegneria spicata (Pursh) Á.Löve, Triosteum pinnatifidum Maxim., Acorus americanus (Raf.) Raf., Andropogon brachystachyus Chapm., Alloteropsis paniculata (Benth.) Stapf, Sedum oryzifolium Makino, Aloe maculata All., Brasenia schreberi J.F.Gmel., Silene vulgaris (Moench) Garcke, Notholaena standleyi (Kümmerle) Maxon, Silene latifolia subsp. alba (Mill.) Greuter & Burdet, Oncorachis ramosa (Zuloaga & Soderstr.) Morrone & Zuloaga, Hodgsonia macrocarpa (Blume) Cogn., Sinofranchetia chinensis (Franch.) Hemsl., Diplostephium gynoxyoides Cuatrec., Lilium bulbiferum L., Dendrobium brymerianum Rchb.f., Solanum commersonii Dunal ex Poir., Malus ×florentina (Zuccagni) C.K.Schneid., Cressa cretica L., Aesculus wangii Hu, Najas flexilis (Willd.) Rostk. & W.L.E.Schmidt, Stewartia serrata Maxim., Roya anglica W. & G.S.West, Populus qiongdaoensis T.Hong & P.Luo, Diplostephium revolutum S.F.Biake, Tsuga sieboldii Carrière, Barklya syringifolia F.Muell., Lancea tibetica Hook.fil. & Thomson, Fritillaria hupehensis P.K.Hsiao & K.C.Hsia, Leptochilus hemionitideus (C.Presl) Noot., Eriachne sulcata W.Hartley, Paspalum paniculatum L., Elodea canadensis Michx., Picea jezoensis (Siebold & Zucc.) Carrière, Dendrobium kingianum Bidwill ex Lindl., Phytolacca insularis Nakai, Isoetes graniticola D.F.Brunt., Hordeum vulgare subsp. vulgare, Mankyua chejuensis B.Y.Sun, M.H.Kim & C.H.Kim, Paraneurachne muelleri (Hack.) S.T.Blake, Eriachne pallescens R.Br., Hemerocallis fulva (L.) L., Pinus taeda L., Camellia reticulata Lindl., Stylosanthes scabra Vogel, Laestadia muscicola Wedd., Paeonia ludlowii (Stern & G.Taylor) D.Y.Hong, Scurrula notothixoides (Hance) Danser, Aconitum delavayi Franch., Isoetes valida (Engelm.) Clute, Graffenrieda moritziana Triana, Chrysopogon serrulatus Trin., Clematis brevicaudata DC., Symplocos paniculata (Thunb.) Miq., Chuanminshen violaceum M.L.Sheh & R.H.Shan, Hyparrhenia umbrosa (Hochst.) Andersson ex Clayton, Pachycladon enysii (Cheeseman) Heenan & A.D.Mitch., Echinochloa colona (L.) Link, Carum carvi L., Solanum elaeagnifolium Cav., Cymbopogon flexuosus (Nees ex Steud.) Will.Watson, Clematis fusca var. coreana Nakai, Salix purpurea L., Viola raddeana Regel, Cochlearia danica L., Acer sino-oblongum F.P.Metcalf, Crudia harmsiana De Wild., Parastrephia quadrangularis (Meyen) Cabrera, Baccharis tricuneata (L.fil.) Pers., Rehmannia henryi N.E.Br., Scrophularia henryi Hemsl., Solanum chilense (Dunal) Reiche, Dendrobium scoriarum W.W.Sm., Glycine dolichocarpa Tateishi & H.Ohashi, Cupressus gigantea W.C.Cheng & L.K.Fu, Acidosasa purpurea (Hsueh f. & T.P.Yi) Keng f., Fritillaria usuriensis Maxim., Gossypium bickii (F.M.Bailey) Prokh., Stylosanthes viscosa (L.) Sw., Solms-laubachia eurycarpa (Maxim.) Botsch., Cucumis melo var. makuwa Makino, Neottia pinetorum (Lindl.) Szlach., Diplostephium rupestre (Kunth) Wedd., Sinojackia xylocarpa Hu, Tinospora cordifolia (Willd.) Miers, Dendrosenecio cheranganiensis (Cotton & Blakelock) E.B.Knox, Aegilops longissima Schweinf. & Muschl., Taxus canadensis Marshall, Aconitum hemsleyanum E.Pritz. ex Diels, Passiflora ligularis Juss., Diplostephium ochraceum (Kunth) Nees, Cucurbita moschata (Duchesne) Duchesne ex Poir., Meconopsis racemosa Maxim., Habenaria pantlingiana Kraenzl., Morinda officinalis F.C.How, Elaeis guineensis Jacq., Dunnia sinensis Tutcher, Bienertia sinuspersici Akhani, Utricularia gibba L., Clematis acerifolia Maxim., Salvia bulleyana Diels, Salicornia bigelovii Torr., Lozanella enantiophylla (Donn.Sm.) Killip & C.V.Morton, Platycladus orientalis (L.) Franco, Campomanesia xanthocarpa (Mart.) O.Berg, Eriachne mucronata R.Br., Populus koreana Rehder, Solanum peruvianum L., Diplostephium glandulosum Hieron., Miscanthus sacchariflorus (Maxim.) Benth. & Hook.f. ex Franch., Arundo donax L., Prumnopitys andina (Poepp. ex Endl.) de Laub., Corylopsis coreana Uyeki, Schizachyrium brevifolium (Sw.) Nees ex Buse, Kerriochloa siamensis C.E.Hubb., Aethionema arabicum (L.) Andrz. ex O.E.Schulz, Stemona mairei (H.Lév.) K.Krause, Euonymus japonicus Thunb., Solanum cheesmaniae (L.Riley) Fosberg, Camellia luteoflora Y.K.Li ex Hung T.Chang & F.A.Zeng, Solanum glabratum Dunal, Perilla frutescens f. crispidiscolor Makino, Chionanthus virginicus L., Diplostephium goodspeedii Cuatrec., Stenogyne bifida Hillebr., Selaginella remotifolia Spring, Schizachyrium salzmannii (Trin. ex Steud.) Nash, Lagenaria siceraria (Molina) Standl., Paphiopedilum niveum (Rchb.f.) Stein, Emmenopterys henryi Oliv., Pherosphaera fitzgeraldii (F.Muell.) Hook.f., Phyllostegia velutina (Sherff) H.St.John, Glycosmis pentaphylla (Retz.) Corrêa, Crocus sativus L., Isoetes melanospora Engelm., Bruinsmia polysperma (C.B.Clarke) Steenis, Dacrydium cupressinum Sol. ex G.Forst., Picea morrisonicola Hayata, Allium obliquum L., Gentiana robusta King ex Hook.fil., Bauhinia acuminata L., Daucus carota L., Cuscuta japonica Choisy, Miscanthus sinensis subsp. condensatus (Hack.) T.Koyama, Diplostephium azureum Cuatrec., Firmiana pulcherrima H.H.Hsue, Glycyrrhiza inflata Batalin, Solanum brevicaule Bitter, Stewartia sinii (C.Y.Wu) Sealy, Hyparrhenia figariana (Chiov.) Clayton, Chunia bucklandioides H.T.Chang, Akebia trifoliata (Thunb.) Koidz., Ulmus davidiana Planch., Primula handeliana W.W.Sm. & Forrest, Schizachyrium imberbe A.Camus, Achlys triphylla (Sm.) DC., Lycium chinense Mill., Clematis repens Finet & Gagnep., Dryopteris fragrans (L.) Schott, Ilex delavayi Franch., Colobanthus quitensis (Kunth) Bartl., Cucumis melo var. inodorus H.Jacq., Amaranthus hypochondriacus L., Matthiola incana (L.) W.T.Aiton, Cryptocarya chinensis (Hance) Hemsl., Aletris spicata (Thunb.) Franch., Iochroma nitidum S.Leiva & Quip., Juniperus sabina L., Tolypanthus maclurei (Merr.) Danser, Solanum pennellii Correll, Gentiana tibetica King ex Hook.fil., Dendrosenecio johnstonii (Oliv.) B.Nord., Camptotheca acuminata Decne., Elymus libanoticus (Hack.) Melderis, Diplostephium rhomboidale Cuatrec., Lonicera praeflorens Batalin, Isoetes serracarajensis J.B.S.Pereira, Salino & Stützel, Magnolia liliiflora Desr., Neotorularia korolkowii (Regel & Schmalh.) Hedge & J.Léonard, Thuja standishii (Gordon) Carrière, Diospyros maclurei Merr., Triticum macha var. megrelicum Menabde, Nymphoides simulans Aston, Abies chensiensis Tiegh., Dendrobium spatella Rchb.f., Echinochloa frumentacea Link, Ceratopteris cornuta (P.Beauv.) Le Prieur, Primula sinensis Sabine ex Lindl., Biscutella baetica Boiss. & Reut., Bommeria hispida (Mett.) Underw., Rehia nervata Fijten, Zeugites pittieri Hack., Oritrophium peruvianum (Lam.) Cuatrec., Camellia sinensis var. sinensis, Barthea barthei (Hance ex Benth.) Krasser, Carapa guianensis Aubl., Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz., Morus notabilis C.K.Schneid., Azolla microphylla Kaulf., Populus szechuanica C.K.Schneid., Potentilla freyniana Bornm., Tarenaya hassleriana (Chodat) Iltis, Andropogon mohrii (Hack.) Vasey, Anemone trullifolia Hook.fil. & Thomson, Podophyllum peltatum L., Angelica nitida H.Wolff, Aristida rufescens Steud., Eriachne axillaris Lazarides, Camellia japonica L., Triticum urartu Thumanjan ex Gandilyan, Paspalum virgatum L., Ostrya japonica Sarg., Pellaea truncata Goodd., Passiflora edulis Sims, Forestiera isabelae Hammel & Cornejo, Lepidium meyenii Walp., Clematis macropetala Ledeb., Symplocos ovatilobata Noot., Arthraxon lanceolatus (Roxb.) Hochst., Prunus mongolica Maxim., Lagarostrobos franklinii (Hook.f.) Quinn, Dendropanax morbifer H.Lév., Haenianthus salicifolius Griseb., Fritillaria meleagroides Patrin ex Schult. & Schult.f., Mesotaenium endlicherianum Nägeli, Yucca filamentosa L., Vigna angularis (Willd.) Ohwi & H.Ohashi, Dendrocalamus latiflorus Munro, Rosa ×odorata var. gigantea (Collett ex Crép.) Rehder & E.H.Wilson, Andropogon selloanus (Hack.) Hack., Cinnamomum verum J.Presl, Nyssa sinensis Oliv., Andropogon aequatoriensis Hitchc., Oryza glaberrima Steud., Picea engelmannii Parry ex Engelm., Chionanthus maxwellii P.S.Green, Citrullus lanatus (Thunb.) Matsum. & Nakai, Agropyron cristatum (L.) Gaertn., Allium chrysanthum Regel, Pouteria campechiana (Kunth) Baehni, Iochroma ellipticum (Hook.fil.) Hunz., Potentilla hebiichigo Yonek. & H.Ohashi, Eulophia zollingeri (Rchb.f.) J.J.Sm., Lagerstroemia guilinensis S.K.Lee & L.F.Lau, Diplostephium hippophae S.F.Blake, Capsicum baccatum var. baccatum, Cannabis sativa subsp. sativa, Exostigma notobellidiastrum (Griseb.) G.Sancho, Indosasa sinica C.D.Chu & C.S.Chao, Lobularia libyca (Viv.) Meisn., Cornus controversa Hemsl., Neottia ovata (L.) Bluff & Fingerh., Dendrobium lohohense Tang & F.T.Wang, Ulmus laciniata (Trautv.) Mayr, Ligustrum lucidum W.T.Aiton, Capsicum baccatum var. pendulum (Willd.) Eshbaugh, Pelatantheria scolopendrifolia (Makino) Aver., Adenolobus garipensis (E.Mey.) Torre & Hillc., Coffea canephora Pierre ex A.Froehner, Alangium chinense (Lour.) Harms, Bombax ceiba L., Aldrovanda vesiculosa L., Diplostephium barclayanum Cuatrec., Glehnia littoralis F.Schmidt, 1867, Diplaziopsis javanica (Blume) C.Chr.)", "HasGeospatialIssue is false", "HasCoordinate is true", { "not" : { "BasisOfRecord" : [ "is Fossil" ] } } ] } The dataset includes 1256394 records from 1593 constituent datasets; see https://api.gbif.org/v1/occurrence/download/0009832-190415153152247/datasets/export for details. Data from some individual datasets included in this download may be licensed under less restrictive terms.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.0bhbjw&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.0bhbjw&type=result"></script>');
-->
</script>
WRKY45-overexpressing (WRKY45-ox) rice plants are extremely resistant to rice blast and bacterial leaf-blight diseases. To search for the genes that are potentially responsible for the strong resistance, we performed genome-wide gene expression analysis in WRKY45-ox rice. A microarray analysis using Agilent rice oligo microarray for approximately 42,000 rice genes identified 1,664 genes that are upregulated in WRKY45-ox rice compared with non-transformant rice cv. Nipponbare (NB). Analysis of the genes with altered expression in WRKY45-ox rice by a Gene ontology program (Agri GO; http://bioinfo.cau.edu.cn/agriGO/) revealed that several genes in the biosynthetic pathway for diterpenoid phytoalexins, for which anti-blast fungus activities have been reported, were upregulated in WRKY45-ox rice. Nipponbare rice (Oryza sativa) and WRKY45-ox rice were analyzed in three biological replicates.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=_____OmicsDI::839f0682c9651d675a28c57e081f7be0&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=_____OmicsDI::839f0682c9651d675a28c57e081f7be0&type=result"></script>');
-->
</script>
ABSTRACT The adequacy of spraying technology in the control of Asian rust to factors related to soybean cultivars and fungicide type is fundamental for the efficiency in the control of this disease. In this context, the objective was to evaluate the chemical control of Asian soybean rust and the deposition of the fungicide applied in the crop, according to different volumes and spray nozzles. Four field experiments were set up during the 2014/2015 season, each carried out with one soybean cultivar, using: NA 5909 RR®, NS 7237 IPRO®, BMX Potência RR® and W 712 RR®. The experimental design was randomized blocks in a 2x2x2 factorial arrangement, with four replications. The first factor corresponded to the use of fungicides: [pyraclostrobin + epoxiconazole] and [pyraclostrobin + epoxiconazole] + mancozeb; the second factor, types of spray nozzle: double and triple fan; and the last factor, application volume: 60 and 120 L ha-1. The highest application volume resulted in greater deposition of droplets in the canopy of the plants, regardless of the fungicide, type of spray nozzle and cultivar. The association of fungicides [pyraclostrobin + epoxiconazole] + mancozeb showed greater efficacy in controlling rust, regardless of the type of spray nozzle and the volume applied when compared to [pyraclostrobin + epoxiconazole]. The highest volume of application promoted less disease evolution in the cultivars NA 5909 RR®, NS 7237 IPRO® and BMX Potência RR®. The yields of the cultivar were higher when the combination [pyraclostrobin + epoxiconazole] + mancozeb was used.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.20551333&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.20551333&type=result"></script>');
-->
</script>
The investigators hypothesize that the increase in asthma severity in obese patients is, at least in part, related to a defective number or function of regulatory T cells (Tregs). That is in the obese asthmatic subject a defective Treg profile would augment the inflammation of asthma (a synergistic effect). Alternatively, that Treg dysfunction in obesity might affect asthma independently (an additive effect). To test these hypotheses, the investigators plan to conduct an observational controlled study to compare Treg profile in obese and normal-weight individuals with and without asthma. This is an exploratory study to investigate the following: 1. To determine whether Treg number and function differs between obese and normal-weight individuals with and without asthma. 2. To determine whether serum leptin levels differ between obese and normal-weight individuals with and without asthma. To study whether the immune response as directed by regulatory T cells is different between obese asthmatics, normal weight asthmatics and healthy controls.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::3a5b60586a28bf510f61d39a1da149f9&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::3a5b60586a28bf510f61d39a1da149f9&type=result"></script>');
-->
</script>
First Visit Patients who agree to participate in this research study, will have an initial screening where the subject will be asked about his/her health, a sample of blood will be drawn, the subject will be examined, and an oral glucose tolerance (OGTT) test will be done. - OGTT: The study takes about four hours and will begin on an "empty stomach." A small I.V. will be placed in a vein in the subject's arm. The I.V. will allow a member of the research team to take small amounts of blood for measuring glucose and other substances that circulate in the blood. About 7 tablespoons of blood will be drawn in total during the OGTT. The I.V. will remain in place all during the study. At the beginning of the study, the subject will be asked to drink about 8 ounces (one cup) of a high sugar cola- or orange-flavored drink. If the subject meets all the requirements to be in the study and has a normal glucose tolerance test, he/she will be randomized to either the intensely (Euglycemic hyperinsulinemic clamp) or standard studied group and have the following six or seven tests performed: DEXA scan and Tanita, exercise step test, PAT test, MRI (Abdominal scan), MRS (leg scan), and Euglycemic hyperinsulinemic clamp (intensely studied group only). All of the tests are described below. Females will have a urine pregnancy test before each of these tests. If positive, the subject will not be allowed to participate/continue with the study. - DEXA / Tanita: The DEXA scan will measure how much muscle and fat is in the subject's body and how dense the subject's bones are using an x-ray technique. Directly after the DEXA Scan, the subject's percentage of body fat will be measured using a Tanita scale. - Exercise Step Test: The subject will be asked to step up and down two steps 20 times at their own pace. We will measure the subject's heart rate directly before and for three minutes after this exercise. After a ten minute break, the test will be repeated. - Peripheral Arterial Tonometry (PAT): This test will allow us to evaluate the response of the small blood vessels in the subject's arm to changes in nerve signals to them. During this test, we will put a probe (similar to a tight-fitting glove) on one finger of each of the subject's hands and take some measurements for about five minutes. The probes contain latex, so this test will not be performed on subjects who are allergic to latex. Following these measurements, we will block blood flow to one of the hands for five minutes by putting a blood pressure cuff on one of the arms and inflating the cuff. After the pressure in the cuff is released, we will take more measurements for about five minutes. - MRI (Belly Scan): Magnetic Resonance Imaging (MRI) will be used to take pictures of the subject's belly. These pictures will allow us to calculate how much fat the subject has just below the skin and how much fat is deeper inside the belly. We will also be able to estimate the percentage of fat in the subject's liver. - MRS (Leg scan): We will measure how much fat is in the subject's calf muscle using magnetic resonance spectroscopy (MRS). - Insulin, Glucose and Glycerol Infusion Study (Euglycemic hyperinsulinemic clamp): A small I.V. will be placed into a vein in each arm. One I.V. will be used to take out small amounts of blood for measuring the blood sugar and other substances that circulate in the blood. The other I.V. will be used to infuse insulin, glucose, and glycerol into the subject's blood. Insulin is a hormone that helps bring blood sugar into the cells. Glycerol is a component of fat that is normally present in a person's body. This infusion will not affect the subject's blood sugar in a harmful manner. It will allow us to follow the release of glucose from the liver and glycerol from fat tissue. The subject's blood sugar will be checked closely during the study by taking blood samples from the second I.V. Readings of the blood sugar on each sample will be made at the bedside. If the blood sugar starts to fall, it can be fixed right away. At the end of another three hours, the infusion will be stopped and the subject will eat a meal that will be provided for him/her. The infusion of glucose will be reduced while the subject is eating until the subject's blood sugar is stable. This test takes about 6 hours. The total amount of blood drawn during this test will be less than 8 tablespoons or about half a cup. Indirect calorimetry is a way to measure how much sugar and fat a person is burning when we give insulin. Testing how much fat and sugar a subject burns is an important part of the insulin, glucose, and glycerol infusion study. Therefore we will ask the subject to wear a plastic hood (like an astronaut space helmet) before starting the infusion of insulin and at two other times during the study. Taking Metformin or Placebo Once the subject has completed the six (standard studied group) or seven (intensely studied group only) tests described above, as well as two urine tests for protein, he/she will be randomized to either: - Take Metformin; or - Take a placebo pill The subject will begin by taking one pill (either Metformin or placebo) every day, just before supper. The dose will be slowly increased as follows: Week 1: Before breakfast = 0 and Before supper = 1 (500mg); Week 2: Before breakfast = 1 (500mg) and Before supper = 1 (500mg); Week 3-14: Before breakfast = 1 (500mg) and Before supper = 2 (500mg) The subject will be taking the pills for 3 1/2 months, during which time we will ask that he/she keep a diary of any complaints, problems, or symptoms. Neither the subject, the subject's doctor, nor any of the members of the research team will find out which pill the subject was taking until the end of the study. Monthly Follow-up Subjects will be asked to come back every month for a physical exam. We will measure their height, weight, and blood pressure each time. A urine pregnancy test will be done on all female participants at every visit. At the subject's first follow up visit we will draw a small amount of blood and run tests to make sure the subject is healthy. We will ask the subject and his/her parent about any symptoms that the subject has had, any pills that he/she might have missed taking, and the use of other medications. We will measure the subject's vitamin B12 level on his/her third follow up visit. End of Study About three months after the subject begins taking the Metformin or placebo pills, he/she will repeat the tests described above (oral glucose tolerance test, DEXA and Tanita, exercise step test, PAT test, MRI, and MRS). In the sub-group of participants who had the glucose, insulin, and glycerol infusion test, this will also be repeated at the end of the study. Open Label Phase (Taking Metformin) After the tests described above are completed, all participants (even if they had been assigned a placebo pill) will be given the choice of taking Metformin for the next six months. If the subject does choose to continue, we will continue to monitor him/her monthly, as described in the section above on monthly follow-up. At the end of the additional six months, we will repeat all the tests that the subject had at the beginning of the study. For the intensely studied group, this includes the insulin, glucose and glycerol infusion. The primary objective of this randomized, parallel group, double-blind, placebo-controlled study is to determine whether treatment with metformin enhances insulin sensitivity in a group of ethnically diverse obese insulin-resistant adolescents with normal glucose tolerance.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::b7af92dfd76fc4c5c673b41871c02d42&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::b7af92dfd76fc4c5c673b41871c02d42&type=result"></script>');
-->
</script>
Additional file 11: Table S9. Statistics of collinear genes among the blocks within mango genome.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.11953053.v1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.11953053.v1&type=result"></script>');
-->
</script>
Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26036/cnphis0001470&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26036/cnphis0001470&type=result"></script>');
-->
</script>
ABSTRACT: The aim was to evaluate the replacement of soybean meal by inactive dry yeast (Saccharomyces cerevisiae) from sugar cane on nutritive value of diets for Saanen goats in the peripartum. Twenty-four Saanen goats (nine primiparous, 55.35 ± 4.55 kg and fifteen multiparous, 73.12 ± 8.51 kg) in prepartum and postpartum periods were distributed in a completely randomized design with a 3 × 2 (diet × parturition order) factorial arrangement. Diets were composed of soybean meal, soybean meal plus dry yeast or dry yeast as protein source, and other ingredients: ground corn, mineral supplement and limestone. The roughage source used was the whole plant corn silage (40% of the total diet). Diets were evaluated as dry matter intake and digestibility of nutrients. The diet with total dry yeast inclusion promoted a reduction on the ether extract intake (postpartum) and ether extract digestibility (prepartum and postpartum), due its lower ether extract content when compared to the other diets. Multiparous goats presented higher intakes for dry matter, nutrients and total digestible nutrients in both evaluated periods due their higher intake capacity. Primiparous goats in postpartum had better coefficients of digestibility for dry matter, organic matter, crude protein and total carbohydrates, and so a higher energetic value, attributed to total digestible nutrients compared to multiparous ones. Dry yeast can replace soybean meal with no changes on nutritive value of diets for Saanen goats.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7509560&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7509560&type=result"></script>');
-->
</script>
Published as part of Ouafaa, Mahdi, El, Ouakil, Abdelmoughite & Lachkar, Mohammed, 2022, Non-volatile constituents from Monimiaceae, Siparunaceae and Atherospermataceae plant species and their bioactivities: An up-date covering 2000-2021, pp. 1-28 in Phytochemistry (113291) 202 on page 7, DOI: 10.1016/j.phytochem.2022.113291, http://zenodo.org/record/8235470 Fig. 3. Miscellaneous known compounds isolated from Mollinedia in the Monimiaceae family.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8235475&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8235475&type=result"></script>');
-->
</script>
doi: 10.15468/dl.aq27ff
A dataset containing 331 species occurrences available in GBIF matching the query: { "TaxonKey" : [ "is Lepidium jaredii Brandegee" ] } The dataset includes 331 records from 25 constituent datasets; see https://api.gbif.org/v1/occurrence/download/0152203-220831081235567/datasets/export for details. Data from some individual datasets included in this download may be licensed under less restrictive terms.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.aq27ff&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.aq27ff&type=result"></script>');
-->
</script>
doi: 10.15468/dl.0bhbjw
A dataset containing 1256394 species occurrences available in GBIF matching the query: { "and" : [ "TaxonKey is one of (Sartidia isaloensis Voronts., Razanats. & Besnard, Helleborus thibetanus Franch., Oropetium aristatum (Stapf) Pilg., Urochloa brizantha (A.Rich.) R.D.Webster, Dendrobium chrysotoxum Lindl., Stewartia crassifolia (S.Z.Yan) J.Li & T.L.Ming, Lathyrus ochroleucus Hook., Hydrangea petiolaris Siebold & Zucc., Drosophyllum lusitanicum (L.) Link, Hippophae rhamnoides L., Sporobolus maritimus (Curtis) P.M.Peterson & Saarela, Dendrosenecio kilimanjari subsp. cottonii (Hutch. & G.Taylor) E.B.Knox, Indigofera tinctoria L., Iochroma loxense (Kunth) Miers, Psilotum nudum (L.) P.Beauv., Adenanthera microsperma Teijsm. & Binn., Dioscorea bulbifera L., Oxychloris scariosa (F.Muell.) Lazarides, Scrophularia takesimensis Nakai, Nicotiana otophora Griseb., Nymphaea jamesoniana Planch., Lathraea squamaria L., Populus davidiana Dode, Aphananthe aspera (Thunb.) Planch., Averrhoa carambola L., Zanthoxylum piperitum (L.) DC., Diplostephium oblongifolium Cuatrec., Opisthocentra clidemioides Hook.fil., Lycium barbarum L., Androsace bulleyana Forrest, Gentiana obconica T.N.Ho, Aconitum brachypodum Diels, Lilium pardanthinum (Franch.) Y.D.Gao, Epipactis purpurata Sm., Pseudoroegneria spicata (Pursh) Á.Löve, Triosteum pinnatifidum Maxim., Acorus americanus (Raf.) Raf., Andropogon brachystachyus Chapm., Alloteropsis paniculata (Benth.) Stapf, Sedum oryzifolium Makino, Aloe maculata All., Brasenia schreberi J.F.Gmel., Silene vulgaris (Moench) Garcke, Notholaena standleyi (Kümmerle) Maxon, Silene latifolia subsp. alba (Mill.) Greuter & Burdet, Oncorachis ramosa (Zuloaga & Soderstr.) Morrone & Zuloaga, Hodgsonia macrocarpa (Blume) Cogn., Sinofranchetia chinensis (Franch.) Hemsl., Diplostephium gynoxyoides Cuatrec., Lilium bulbiferum L., Dendrobium brymerianum Rchb.f., Solanum commersonii Dunal ex Poir., Malus ×florentina (Zuccagni) C.K.Schneid., Cressa cretica L., Aesculus wangii Hu, Najas flexilis (Willd.) Rostk. & W.L.E.Schmidt, Stewartia serrata Maxim., Roya anglica W. & G.S.West, Populus qiongdaoensis T.Hong & P.Luo, Diplostephium revolutum S.F.Biake, Tsuga sieboldii Carrière, Barklya syringifolia F.Muell., Lancea tibetica Hook.fil. & Thomson, Fritillaria hupehensis P.K.Hsiao & K.C.Hsia, Leptochilus hemionitideus (C.Presl) Noot., Eriachne sulcata W.Hartley, Paspalum paniculatum L., Elodea canadensis Michx., Picea jezoensis (Siebold & Zucc.) Carrière, Dendrobium kingianum Bidwill ex Lindl., Phytolacca insularis Nakai, Isoetes graniticola D.F.Brunt., Hordeum vulgare subsp. vulgare, Mankyua chejuensis B.Y.Sun, M.H.Kim & C.H.Kim, Paraneurachne muelleri (Hack.) S.T.Blake, Eriachne pallescens R.Br., Hemerocallis fulva (L.) L., Pinus taeda L., Camellia reticulata Lindl., Stylosanthes scabra Vogel, Laestadia muscicola Wedd., Paeonia ludlowii (Stern & G.Taylor) D.Y.Hong, Scurrula notothixoides (Hance) Danser, Aconitum delavayi Franch., Isoetes valida (Engelm.) Clute, Graffenrieda moritziana Triana, Chrysopogon serrulatus Trin., Clematis brevicaudata DC., Symplocos paniculata (Thunb.) Miq., Chuanminshen violaceum M.L.Sheh & R.H.Shan, Hyparrhenia umbrosa (Hochst.) Andersson ex Clayton, Pachycladon enysii (Cheeseman) Heenan & A.D.Mitch., Echinochloa colona (L.) Link, Carum carvi L., Solanum elaeagnifolium Cav., Cymbopogon flexuosus (Nees ex Steud.) Will.Watson, Clematis fusca var. coreana Nakai, Salix purpurea L., Viola raddeana Regel, Cochlearia danica L., Acer sino-oblongum F.P.Metcalf, Crudia harmsiana De Wild., Parastrephia quadrangularis (Meyen) Cabrera, Baccharis tricuneata (L.fil.) Pers., Rehmannia henryi N.E.Br., Scrophularia henryi Hemsl., Solanum chilense (Dunal) Reiche, Dendrobium scoriarum W.W.Sm., Glycine dolichocarpa Tateishi & H.Ohashi, Cupressus gigantea W.C.Cheng & L.K.Fu, Acidosasa purpurea (Hsueh f. & T.P.Yi) Keng f., Fritillaria usuriensis Maxim., Gossypium bickii (F.M.Bailey) Prokh., Stylosanthes viscosa (L.) Sw., Solms-laubachia eurycarpa (Maxim.) Botsch., Cucumis melo var. makuwa Makino, Neottia pinetorum (Lindl.) Szlach., Diplostephium rupestre (Kunth) Wedd., Sinojackia xylocarpa Hu, Tinospora cordifolia (Willd.) Miers, Dendrosenecio cheranganiensis (Cotton & Blakelock) E.B.Knox, Aegilops longissima Schweinf. & Muschl., Taxus canadensis Marshall, Aconitum hemsleyanum E.Pritz. ex Diels, Passiflora ligularis Juss., Diplostephium ochraceum (Kunth) Nees, Cucurbita moschata (Duchesne) Duchesne ex Poir., Meconopsis racemosa Maxim., Habenaria pantlingiana Kraenzl., Morinda officinalis F.C.How, Elaeis guineensis Jacq., Dunnia sinensis Tutcher, Bienertia sinuspersici Akhani, Utricularia gibba L., Clematis acerifolia Maxim., Salvia bulleyana Diels, Salicornia bigelovii Torr., Lozanella enantiophylla (Donn.Sm.) Killip & C.V.Morton, Platycladus orientalis (L.) Franco, Campomanesia xanthocarpa (Mart.) O.Berg, Eriachne mucronata R.Br., Populus koreana Rehder, Solanum peruvianum L., Diplostephium glandulosum Hieron., Miscanthus sacchariflorus (Maxim.) Benth. & Hook.f. ex Franch., Arundo donax L., Prumnopitys andina (Poepp. ex Endl.) de Laub., Corylopsis coreana Uyeki, Schizachyrium brevifolium (Sw.) Nees ex Buse, Kerriochloa siamensis C.E.Hubb., Aethionema arabicum (L.) Andrz. ex O.E.Schulz, Stemona mairei (H.Lév.) K.Krause, Euonymus japonicus Thunb., Solanum cheesmaniae (L.Riley) Fosberg, Camellia luteoflora Y.K.Li ex Hung T.Chang & F.A.Zeng, Solanum glabratum Dunal, Perilla frutescens f. crispidiscolor Makino, Chionanthus virginicus L., Diplostephium goodspeedii Cuatrec., Stenogyne bifida Hillebr., Selaginella remotifolia Spring, Schizachyrium salzmannii (Trin. ex Steud.) Nash, Lagenaria siceraria (Molina) Standl., Paphiopedilum niveum (Rchb.f.) Stein, Emmenopterys henryi Oliv., Pherosphaera fitzgeraldii (F.Muell.) Hook.f., Phyllostegia velutina (Sherff) H.St.John, Glycosmis pentaphylla (Retz.) Corrêa, Crocus sativus L., Isoetes melanospora Engelm., Bruinsmia polysperma (C.B.Clarke) Steenis, Dacrydium cupressinum Sol. ex G.Forst., Picea morrisonicola Hayata, Allium obliquum L., Gentiana robusta King ex Hook.fil., Bauhinia acuminata L., Daucus carota L., Cuscuta japonica Choisy, Miscanthus sinensis subsp. condensatus (Hack.) T.Koyama, Diplostephium azureum Cuatrec., Firmiana pulcherrima H.H.Hsue, Glycyrrhiza inflata Batalin, Solanum brevicaule Bitter, Stewartia sinii (C.Y.Wu) Sealy, Hyparrhenia figariana (Chiov.) Clayton, Chunia bucklandioides H.T.Chang, Akebia trifoliata (Thunb.) Koidz., Ulmus davidiana Planch., Primula handeliana W.W.Sm. & Forrest, Schizachyrium imberbe A.Camus, Achlys triphylla (Sm.) DC., Lycium chinense Mill., Clematis repens Finet & Gagnep., Dryopteris fragrans (L.) Schott, Ilex delavayi Franch., Colobanthus quitensis (Kunth) Bartl., Cucumis melo var. inodorus H.Jacq., Amaranthus hypochondriacus L., Matthiola incana (L.) W.T.Aiton, Cryptocarya chinensis (Hance) Hemsl., Aletris spicata (Thunb.) Franch., Iochroma nitidum S.Leiva & Quip., Juniperus sabina L., Tolypanthus maclurei (Merr.) Danser, Solanum pennellii Correll, Gentiana tibetica King ex Hook.fil., Dendrosenecio johnstonii (Oliv.) B.Nord., Camptotheca acuminata Decne., Elymus libanoticus (Hack.) Melderis, Diplostephium rhomboidale Cuatrec., Lonicera praeflorens Batalin, Isoetes serracarajensis J.B.S.Pereira, Salino & Stützel, Magnolia liliiflora Desr., Neotorularia korolkowii (Regel & Schmalh.) Hedge & J.Léonard, Thuja standishii (Gordon) Carrière, Diospyros maclurei Merr., Triticum macha var. megrelicum Menabde, Nymphoides simulans Aston, Abies chensiensis Tiegh., Dendrobium spatella Rchb.f., Echinochloa frumentacea Link, Ceratopteris cornuta (P.Beauv.) Le Prieur, Primula sinensis Sabine ex Lindl., Biscutella baetica Boiss. & Reut., Bommeria hispida (Mett.) Underw., Rehia nervata Fijten, Zeugites pittieri Hack., Oritrophium peruvianum (Lam.) Cuatrec., Camellia sinensis var. sinensis, Barthea barthei (Hance ex Benth.) Krasser, Carapa guianensis Aubl., Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz., Morus notabilis C.K.Schneid., Azolla microphylla Kaulf., Populus szechuanica C.K.Schneid., Potentilla freyniana Bornm., Tarenaya hassleriana (Chodat) Iltis, Andropogon mohrii (Hack.) Vasey, Anemone trullifolia Hook.fil. & Thomson, Podophyllum peltatum L., Angelica nitida H.Wolff, Aristida rufescens Steud., Eriachne axillaris Lazarides, Camellia japonica L., Triticum urartu Thumanjan ex Gandilyan, Paspalum virgatum L., Ostrya japonica Sarg., Pellaea truncata Goodd., Passiflora edulis Sims, Forestiera isabelae Hammel & Cornejo, Lepidium meyenii Walp., Clematis macropetala Ledeb., Symplocos ovatilobata Noot., Arthraxon lanceolatus (Roxb.) Hochst., Prunus mongolica Maxim., Lagarostrobos franklinii (Hook.f.) Quinn, Dendropanax morbifer H.Lév., Haenianthus salicifolius Griseb., Fritillaria meleagroides Patrin ex Schult. & Schult.f., Mesotaenium endlicherianum Nägeli, Yucca filamentosa L., Vigna angularis (Willd.) Ohwi & H.Ohashi, Dendrocalamus latiflorus Munro, Rosa ×odorata var. gigantea (Collett ex Crép.) Rehder & E.H.Wilson, Andropogon selloanus (Hack.) Hack., Cinnamomum verum J.Presl, Nyssa sinensis Oliv., Andropogon aequatoriensis Hitchc., Oryza glaberrima Steud., Picea engelmannii Parry ex Engelm., Chionanthus maxwellii P.S.Green, Citrullus lanatus (Thunb.) Matsum. & Nakai, Agropyron cristatum (L.) Gaertn., Allium chrysanthum Regel, Pouteria campechiana (Kunth) Baehni, Iochroma ellipticum (Hook.fil.) Hunz., Potentilla hebiichigo Yonek. & H.Ohashi, Eulophia zollingeri (Rchb.f.) J.J.Sm., Lagerstroemia guilinensis S.K.Lee & L.F.Lau, Diplostephium hippophae S.F.Blake, Capsicum baccatum var. baccatum, Cannabis sativa subsp. sativa, Exostigma notobellidiastrum (Griseb.) G.Sancho, Indosasa sinica C.D.Chu & C.S.Chao, Lobularia libyca (Viv.) Meisn., Cornus controversa Hemsl., Neottia ovata (L.) Bluff & Fingerh., Dendrobium lohohense Tang & F.T.Wang, Ulmus laciniata (Trautv.) Mayr, Ligustrum lucidum W.T.Aiton, Capsicum baccatum var. pendulum (Willd.) Eshbaugh, Pelatantheria scolopendrifolia (Makino) Aver., Adenolobus garipensis (E.Mey.) Torre & Hillc., Coffea canephora Pierre ex A.Froehner, Alangium chinense (Lour.) Harms, Bombax ceiba L., Aldrovanda vesiculosa L., Diplostephium barclayanum Cuatrec., Glehnia littoralis F.Schmidt, 1867, Diplaziopsis javanica (Blume) C.Chr.)", "HasGeospatialIssue is false", "HasCoordinate is true", { "not" : { "BasisOfRecord" : [ "is Fossil" ] } } ] } The dataset includes 1256394 records from 1593 constituent datasets; see https://api.gbif.org/v1/occurrence/download/0009832-190415153152247/datasets/export for details. Data from some individual datasets included in this download may be licensed under less restrictive terms.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.0bhbjw&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/dl.0bhbjw&type=result"></script>');
-->
</script>
WRKY45-overexpressing (WRKY45-ox) rice plants are extremely resistant to rice blast and bacterial leaf-blight diseases. To search for the genes that are potentially responsible for the strong resistance, we performed genome-wide gene expression analysis in WRKY45-ox rice. A microarray analysis using Agilent rice oligo microarray for approximately 42,000 rice genes identified 1,664 genes that are upregulated in WRKY45-ox rice compared with non-transformant rice cv. Nipponbare (NB). Analysis of the genes with altered expression in WRKY45-ox rice by a Gene ontology program (Agri GO; http://bioinfo.cau.edu.cn/agriGO/) revealed that several genes in the biosynthetic pathway for diterpenoid phytoalexins, for which anti-blast fungus activities have been reported, were upregulated in WRKY45-ox rice. Nipponbare rice (Oryza sativa) and WRKY45-ox rice were analyzed in three biological replicates.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=_____OmicsDI::839f0682c9651d675a28c57e081f7be0&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=_____OmicsDI::839f0682c9651d675a28c57e081f7be0&type=result"></script>');
-->
</script>
ABSTRACT The adequacy of spraying technology in the control of Asian rust to factors related to soybean cultivars and fungicide type is fundamental for the efficiency in the control of this disease. In this context, the objective was to evaluate the chemical control of Asian soybean rust and the deposition of the fungicide applied in the crop, according to different volumes and spray nozzles. Four field experiments were set up during the 2014/2015 season, each carried out with one soybean cultivar, using: NA 5909 RR®, NS 7237 IPRO®, BMX Potência RR® and W 712 RR®. The experimental design was randomized blocks in a 2x2x2 factorial arrangement, with four replications. The first factor corresponded to the use of fungicides: [pyraclostrobin + epoxiconazole] and [pyraclostrobin + epoxiconazole] + mancozeb; the second factor, types of spray nozzle: double and triple fan; and the last factor, application volume: 60 and 120 L ha-1. The highest application volume resulted in greater deposition of droplets in the canopy of the plants, regardless of the fungicide, type of spray nozzle and cultivar. The association of fungicides [pyraclostrobin + epoxiconazole] + mancozeb showed greater efficacy in controlling rust, regardless of the type of spray nozzle and the volume applied when compared to [pyraclostrobin + epoxiconazole]. The highest volume of application promoted less disease evolution in the cultivars NA 5909 RR®, NS 7237 IPRO® and BMX Potência RR®. The yields of the cultivar were higher when the combination [pyraclostrobin + epoxiconazole] + mancozeb was used.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.20551333&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.20551333&type=result"></script>');
-->
</script>
The investigators hypothesize that the increase in asthma severity in obese patients is, at least in part, related to a defective number or function of regulatory T cells (Tregs). That is in the obese asthmatic subject a defective Treg profile would augment the inflammation of asthma (a synergistic effect). Alternatively, that Treg dysfunction in obesity might affect asthma independently (an additive effect). To test these hypotheses, the investigators plan to conduct an observational controlled study to compare Treg profile in obese and normal-weight individuals with and without asthma. This is an exploratory study to investigate the following: 1. To determine whether Treg number and function differs between obese and normal-weight individuals with and without asthma. 2. To determine whether serum leptin levels differ between obese and normal-weight individuals with and without asthma. To study whether the immune response as directed by regulatory T cells is different between obese asthmatics, normal weight asthmatics and healthy controls.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::3a5b60586a28bf510f61d39a1da149f9&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::3a5b60586a28bf510f61d39a1da149f9&type=result"></script>');
-->
</script>
First Visit Patients who agree to participate in this research study, will have an initial screening where the subject will be asked about his/her health, a sample of blood will be drawn, the subject will be examined, and an oral glucose tolerance (OGTT) test will be done. - OGTT: The study takes about four hours and will begin on an "empty stomach." A small I.V. will be placed in a vein in the subject's arm. The I.V. will allow a member of the research team to take small amounts of blood for measuring glucose and other substances that circulate in the blood. About 7 tablespoons of blood will be drawn in total during the OGTT. The I.V. will remain in place all during the study. At the beginning of the study, the subject will be asked to drink about 8 ounces (one cup) of a high sugar cola- or orange-flavored drink. If the subject meets all the requirements to be in the study and has a normal glucose tolerance test, he/she will be randomized to either the intensely (Euglycemic hyperinsulinemic clamp) or standard studied group and have the following six or seven tests performed: DEXA scan and Tanita, exercise step test, PAT test, MRI (Abdominal scan), MRS (leg scan), and Euglycemic hyperinsulinemic clamp (intensely studied group only). All of the tests are described below. Females will have a urine pregnancy test before each of these tests. If positive, the subject will not be allowed to participate/continue with the study. - DEXA / Tanita: The DEXA scan will measure how much muscle and fat is in the subject's body and how dense the subject's bones are using an x-ray technique. Directly after the DEXA Scan, the subject's percentage of body fat will be measured using a Tanita scale. - Exercise Step Test: The subject will be asked to step up and down two steps 20 times at their own pace. We will measure the subject's heart rate directly before and for three minutes after this exercise. After a ten minute break, the test will be repeated. - Peripheral Arterial Tonometry (PAT): This test will allow us to evaluate the response of the small blood vessels in the subject's arm to changes in nerve signals to them. During this test, we will put a probe (similar to a tight-fitting glove) on one finger of each of the subject's hands and take some measurements for about five minutes. The probes contain latex, so this test will not be performed on subjects who are allergic to latex. Following these measurements, we will block blood flow to one of the hands for five minutes by putting a blood pressure cuff on one of the arms and inflating the cuff. After the pressure in the cuff is released, we will take more measurements for about five minutes. - MRI (Belly Scan): Magnetic Resonance Imaging (MRI) will be used to take pictures of the subject's belly. These pictures will allow us to calculate how much fat the subject has just below the skin and how much fat is deeper inside the belly. We will also be able to estimate the percentage of fat in the subject's liver. - MRS (Leg scan): We will measure how much fat is in the subject's calf muscle using magnetic resonance spectroscopy (MRS). - Insulin, Glucose and Glycerol Infusion Study (Euglycemic hyperinsulinemic clamp): A small I.V. will be placed into a vein in each arm. One I.V. will be used to take out small amounts of blood for measuring the blood sugar and other substances that circulate in the blood. The other I.V. will be used to infuse insulin, glucose, and glycerol into the subject's blood. Insulin is a hormone that helps bring blood sugar into the cells. Glycerol is a component of fat that is normally present in a person's body. This infusion will not affect the subject's blood sugar in a harmful manner. It will allow us to follow the release of glucose from the liver and glycerol from fat tissue. The subject's blood sugar will be checked closely during the study by taking blood samples from the second I.V. Readings of the blood sugar on each sample will be made at the bedside. If the blood sugar starts to fall, it can be fixed right away. At the end of another three hours, the infusion will be stopped and the subject will eat a meal that will be provided for him/her. The infusion of glucose will be reduced while the subject is eating until the subject's blood sugar is stable. This test takes about 6 hours. The total amount of blood drawn during this test will be less than 8 tablespoons or about half a cup. Indirect calorimetry is a way to measure how much sugar and fat a person is burning when we give insulin. Testing how much fat and sugar a subject burns is an important part of the insulin, glucose, and glycerol infusion study. Therefore we will ask the subject to wear a plastic hood (like an astronaut space helmet) before starting the infusion of insulin and at two other times during the study. Taking Metformin or Placebo Once the subject has completed the six (standard studied group) or seven (intensely studied group only) tests described above, as well as two urine tests for protein, he/she will be randomized to either: - Take Metformin; or - Take a placebo pill The subject will begin by taking one pill (either Metformin or placebo) every day, just before supper. The dose will be slowly increased as follows: Week 1: Before breakfast = 0 and Before supper = 1 (500mg); Week 2: Before breakfast = 1 (500mg) and Before supper = 1 (500mg); Week 3-14: Before breakfast = 1 (500mg) and Before supper = 2 (500mg) The subject will be taking the pills for 3 1/2 months, during which time we will ask that he/she keep a diary of any complaints, problems, or symptoms. Neither the subject, the subject's doctor, nor any of the members of the research team will find out which pill the subject was taking until the end of the study. Monthly Follow-up Subjects will be asked to come back every month for a physical exam. We will measure their height, weight, and blood pressure each time. A urine pregnancy test will be done on all female participants at every visit. At the subject's first follow up visit we will draw a small amount of blood and run tests to make sure the subject is healthy. We will ask the subject and his/her parent about any symptoms that the subject has had, any pills that he/she might have missed taking, and the use of other medications. We will measure the subject's vitamin B12 level on his/her third follow up visit. End of Study About three months after the subject begins taking the Metformin or placebo pills, he/she will repeat the tests described above (oral glucose tolerance test, DEXA and Tanita, exercise step test, PAT test, MRI, and MRS). In the sub-group of participants who had the glucose, insulin, and glycerol infusion test, this will also be repeated at the end of the study. Open Label Phase (Taking Metformin) After the tests described above are completed, all participants (even if they had been assigned a placebo pill) will be given the choice of taking Metformin for the next six months. If the subject does choose to continue, we will continue to monitor him/her monthly, as described in the section above on monthly follow-up. At the end of the additional six months, we will repeat all the tests that the subject had at the beginning of the study. For the intensely studied group, this includes the insulin, glucose and glycerol infusion. The primary objective of this randomized, parallel group, double-blind, placebo-controlled study is to determine whether treatment with metformin enhances insulin sensitivity in a group of ethnically diverse obese insulin-resistant adolescents with normal glucose tolerance.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opentrials__::b7af92dfd76fc4c5c673b41871c02d42&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |