search
582,378 Research products
Relevance
arrow_drop_down

  • agricultural biotechnology

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ruey Yih Lin; Ching Wen Hsu; Wen Yih Chen;

    Abstract The penetration of various amino acids and dipeptides through porcine skin was measured in vitro in this work to examine the effect of lipophilicity and molecular weight of the compounds on the permeability of passive diffusion. Experimental results indicated that the effect of lipophilicity is a more dominant factor than the molecular weight. An equation was also developed to accurately predict the permeability of amino acids and dipeptides based on the lipophilicity of penetrants as follows: log Kp = −2.73+0.38ln K−0.036(ln K)2 with R2 of 0.85 for the regression, where K, the lipophilicity, is represented by the partition coefficients of amino acids and dipeptides between the PEG/Na2SO4 aqueous two-phase system. In particular, the successful prediction of partition coefficients of dipeptides by Chen's method was used to further predict the dipeptides' permeability for transdermal delivery. The experimental results were deemed satisfactory.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Controlle...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Controlled Release
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Controlle...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Controlled Release
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. A. Moshtaghi Nia; K.M. Wittenberg;

    The effects of delayed bale wrapping on fermentation characteristics, preservation and quality of whole barley crop ensiled as large bales (LBS) were examined. Forage was cut at the early milk stage and allowed to wilt over 24-h period to 47% DM. Bales were allocated to one of three treatments requiring that bales be wrapped within 2, 10 and 19 h post-baling. Bales were sampled at baling and on days 1, 2, 3, 6, 9, 13, 17, 29, 64, 92, 252 and 308 post-baling. Bales were weighed prior to being wrapped and when removed from storage to measure DM and nutrient losses during storage. During wrapping, a thermocouple wire was inserted in each bale to monitor bale temperature. Bales wrapped within 2 and 10 h were similar (P > 0.05) for storage temperature, nutrient profile and recovery, and for lactic and volatile fatty acid content. Lactic acid concentrations peaked between 29 and 64 d post-ensiling for bales wrapped 2 and 10 h post-bailing, but did not peak until day 92 for bales wrapped at 19 h post-bailing. Storage temperature of bales wrapped after 2 and 10 h post-bailing did not exceed 30 °C during storage, but bales wrapped 19 h later exceeded 30 °C for the first 19 d during storage. Bales wrapped within 19 h had a lower (P < 0.05) water soluble carbohydrate content and a higher acid detergent insoluble N and ammonia N level compared to 2 and 10 h bales. The pH and 2, 3 butanediol levels were higher (P < 0.01) in 19 h compared to 2 and 10 h bale silage. A 64 d ensiling period was required to achieve minimum pH values in LBS wrapped with 10 h post-baling, the length of time being greater when wrapping was delayed to 19 h post-baling. Results from this study indicate that delaying bale wrapping to the next day resulted in a temperature rise, and poor silage protein quality. Wrapping 2 h post-baling was not an advantage to wrapping 10 h post-baling in whole crop barley ensiled as large bales. Key words: Silage, large bale, whole crop barley, delayed wrapping, ensiling characteristics

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Animal Science
    Article . 2000 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Animal Science
      Article . 2000 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sh.A. Bakhshetsyan; E.R. Gevorgyan; M.N. Mikayelyan;

    The current article is dedicated to the study of the possibility of obtaining alcoholic beverages made by fermenting natural honey (honey wine) using different types of dry active yeast and yeast autolysis derivatives. The data obtained from the results of the research will be interesting both from the scientific and production point of view and allow us to conclude that the selected yeasts can be used for the production of such alcoholic beverages.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Paula J. Fedorka-Cray; Peter B. Bahnson; S. R. Ladely;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.lib.iasta...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dr.lib.iastate.edu/bit...
    Conference object
    Data sources: UnpayWall
    https://doi.org/10.31274/safep...
    Conference object . 1999 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.lib.iasta...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dr.lib.iastate.edu/bit...
      Conference object
      Data sources: UnpayWall
      https://doi.org/10.31274/safep...
      Conference object . 1999 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rohini Darade; V.G. Atkare; Seema Chaudhary;

    The three different types of whey viz., Paneer, Chakka and channa were utilized as base material for preparation of whey-potato fermented product. This product was prepared by adjustment of pH of whey at 6.4, addition of potato (nearly 30%) to the level of milk solids (12.69%), fermentation with LF-40 starter culture (2%), by incubating at 30±1 0 C for 12 hr, sweetening with 5 per cent sugar, packaging in cups and store at 5-7 0 C, be adopted. Channa whey system (T 2 ) produced organolepticaly superior product but samples T 4 (Equal quantity of three whey ) and T 0 ( Plain lassi ) were also comparable to them. The addition of vanilla (essence) @ 0.06 ml and pista (colour) @ 0.03 ml per 100 ml of whey potato fermented product had more acceptability as compared to without addition of them. Considerable increase in the sensory score (8.30 ± 0.12) was observed due to preparation of Kadhi prepared from whey potato fermented product. Consumers appreciated the plain whey potato fermented product with remark of “very good to excellent”.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: E.H. Jaster; Kenneth J. Moore;

    Abstract Second harvest alfalfa was cut at the early bud stage, wilted in the field to approximately 45% moisture, and chopped to a theoretical length of 0.95 cm. Herbage was reconstituted to moisture concentrations of 50, 60, and 70% prior to enzyme treatment. Treatments consisted of control, 0.5 or 1 g kg −1 of an enzyme preparation having cellulolytic and amylolytic activity. Herbage was ensiled in small experimental silos for 1, 7 or 21 days. Organic acid content and pH reflected both the time of fermentation and moisture concentration of alfalfa. Rapid acidification occurred by Day 7 in the 70% moisture silage and remained constant to Day 21 of fermentation. Lactate concentrations remained relatively high and butyrate low in high moisture silages. Lactate concentration in alfalfa silages was apparently affected by moisture and enzyme treatment. Increases in lactate concentration were noted in the 60 and 70% moisture silages treated at a rate of 1 g kg −1 enzyme preparation. Crude protein and in vitro dry matter digestibility of alfalfa silages were not affected by moisture concentration or addition of enzyme. Cell wall components remained fairly stable during ensiling. The cellulase preparation did not have a beneficial effect in this experiment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Animal Feed Science ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Animal Feed Science and Technology
    Article . 1990 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Animal Feed Science ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Animal Feed Science and Technology
      Article . 1990 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: S. A. Tomás; Alfredo Cruz-Orea; S. Stolik; R. Pedroza-Islas; +2 Authors

    One of the most important factors in the preparation of edible films regards the choice of ingredients. Edible films are commonly prepared with single or mixed high-molecular-weight compounds like proteins and gums. In the present work, protein and gum-based edible films were prepared and their thermal diffusivity determined by photoacoustics. The films were prepared with different concentrations of four basic ingredients: whey protein concentrate, mesquite gum, sodium alginate, and κ-carrageenan. In single-component films, the highest thermal diffusivity was found in mesquite gum (1.97×10−7m2ċs−1), followed by sodium alginate, whey protein concentrate, and κ-carrageenan samples. In composed films, the highest thermal diffusivity was obtained in a ternary film made of mesquite gum, whey protein concentrate, and sodium alginate in identical parts (5.20×10−7m2ċs−1).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: A, Gomez; N B, Cook;

    The aim of this study was to examine the time budgets of 205 lactating dairy cows housed in 16 freestall barns in Wisconsin and to determine the relationships between components of the time budget and herd- and cow-level fixed effects using mixed models. Using continuous video surveillance, time lying in the stall, time standing in the stall, time standing in the alleys (including drinking), time feeding, and time milking (time out of the pen for milking and transit) during a 24-h period were measured for each cow. In addition, the number of lying bouts and the mean duration of each lying bout per 24-h period were determined. Time milking varied between cows from 0.5 to 6.0 h/d, with a mean ± standard deviation of 2.7 ± 1.1h/d. Time milking was influenced significantly by pen stocking density, and time milking negatively affected time feeding, time lying, and time in the alley, but not time standing in the stall. Locomotion score, either directly or through an interaction with stall base type (a rubber crumb-filled mattress, MAT, or sand bedding, SAND), influenced pen activity. Lame cows spent less time feeding, less time in the alleys, and more time standing in the stalls in MAT herds, but not in SAND herds. The effect of lameness on lying time is complex and dependent on the time available for rest and differences in resting behavior observed between cows in MAT and SAND herds. In MAT herds, rest was characterized by a larger number of lying bouts of shorter duration than in SAND herds (mean = 14.4; confidence interval, CI: 12.4 to 16.5 vs. mean = 10.2; CI: 8.2 to 12.2 bouts per d, and mean = 1.0; CI: 0.9 to 1.1 vs. mean = 1.3, CI: 1.2 to 1.4h bout duration for MAT and SAND herds, respectively). Lameness was associated with an increase in time standing in the stall and a reduction in the mean (CI) number of lying bouts per day from 13.2 (CI: 12.3 to 14.1) bouts/d for nonlame cows to 10.9 (CI: 9.30 to 12.8) bouts/d for moderately lame cows, and an overall reduction in lying time in MAT herds compared with SAND herds (11.5; CI: 10.0 to 13.0 vs. 12.7; CI: 11.0 to 14.3h/d, respectively). These results show that time out of the pen milking, stall base type, and lameness significantly affect time budgets of cows housed in freestall facilities.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Dairy Sci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Dairy Science
    Article . 2010 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    171
    citations171
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Dairy Sci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Dairy Science
      Article . 2010 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gauthier Lequeue; Xavier Draye; Vincent Baeten;

    AbstractNear infrared microscopy (NIRM) has been developed as a rapid technique to predict the chemical composition of foods, reduce analytical costs and time and ease sample preparation. In this study, NIRM has been evaluated as an alternative to classical chemical analysis to determine the nitrogen and carbon content of small samples of tomato (Solanum lycopersicum L.) leaf powder. Near infrared spectra were obtained by NIRM for independent leaf samples collected on 216 plants grown under six different levels of nitrogen. From these, 30 calibration and 30 validation samples covering the spectral range of the whole set were selected and their nitrogen and carbon contents were determined by a reference method. The calibration model obtained for nitrogen content proved to be excellent, with a coefficient of determination in calibration (R2c) higher than 0.9 and a ratio of performance to deviation (RPDc) higher than 3. Statistical indicators of prediction using the validation set were also very high (R2p values > 0.90). However, the calibration model obtained for carbon content was much less satisfactory (R2c < 0.50). NIRM appears as a promising and suitable tool for a rapid, non-destructive and reliable determination of nitrogen content of tiny samples of tomato leaf powder.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2016 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2016 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yaxin Sun; Jia Yao; Liang Zhang; Fang Chen; +2 Authors

    Evidence on mechanism of instantaneous pressure softening of asparagus lettuce under high pressure processing was explored with respect to pectin methylesterase activity, degree of methylation of pectin, degree of methylation patterns of pectin fractions, and pectin distribution in cell wall matrix. Instantaneous pressure softening was observed at 300 MPa, while texture recovery was obtained at 500 MPa. Pectin methylesterase activity was not significantly affected at 100 and 300 MPa, but dramatically activated at 500 MPa (p < 0.05). Correspondingly, the degree of methylation of pectin decreased as pressure rose. Results of in situ immuno-dot blotting and immunolabeling based on specific bindings of antipectin antibodies showed a significant reduction of chelator-soluble pectin at 300 MPa, in contrast to a remarkable increase at 500 MPa. High pressure processing-induced demethoxylation was further verified by the enhanced fluorescence intensity of LM19 (an antihomogalacturonan antibody specifically binds to nonmethoxylated pectin) immunolabeled pectin, which was mainly located in tricellular junctions at 300 MPa, but covered the full cell surface at 500 MPa. In conclusion, instantaneous pressure softening of asparagus lettuce is strongly associated with loss of chelator-soluble pectin at 300 MPa.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Science and Tec...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Food Science and Technology International
    Article . 2019 . Peer-reviewed
    License: SAGE TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Science and Tec...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Food Science and Technology International
      Article . 2019 . Peer-reviewed
      License: SAGE TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
582,378 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ruey Yih Lin; Ching Wen Hsu; Wen Yih Chen;

    Abstract The penetration of various amino acids and dipeptides through porcine skin was measured in vitro in this work to examine the effect of lipophilicity and molecular weight of the compounds on the permeability of passive diffusion. Experimental results indicated that the effect of lipophilicity is a more dominant factor than the molecular weight. An equation was also developed to accurately predict the permeability of amino acids and dipeptides based on the lipophilicity of penetrants as follows: log Kp = −2.73+0.38ln K−0.036(ln K)2 with R2 of 0.85 for the regression, where K, the lipophilicity, is represented by the partition coefficients of amino acids and dipeptides between the PEG/Na2SO4 aqueous two-phase system. In particular, the successful prediction of partition coefficients of dipeptides by Chen's method was used to further predict the dipeptides' permeability for transdermal delivery. The experimental results were deemed satisfactory.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Controlle...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Controlled Release
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Controlle...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Controlled Release
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. A. Moshtaghi Nia; K.M. Wittenberg;

    The effects of delayed bale wrapping on fermentation characteristics, preservation and quality of whole barley crop ensiled as large bales (LBS) were examined. Forage was cut at the early milk stage and allowed to wilt over 24-h period to 47% DM. Bales were allocated to one of three treatments requiring that bales be wrapped within 2, 10 and 19 h post-baling. Bales were sampled at baling and on days 1, 2, 3, 6, 9, 13, 17, 29, 64, 92, 252 and 308 post-baling. Bales were weighed prior to being wrapped and when removed from storage to measure DM and nutrient losses during storage. During wrapping, a thermocouple wire was inserted in each bale to monitor bale temperature. Bales wrapped within 2 and 10 h were similar (P > 0.05) for storage temperature, nutrient profile and recovery, and for lactic and volatile fatty acid content. Lactic acid concentrations peaked between 29 and 64 d post-ensiling for bales wrapped 2 and 10 h post-bailing, but did not peak until day 92 for bales wrapped at 19 h post-bailing. Storage temperature of bales wrapped after 2 and 10 h post-bailing did not exceed 30 °C during storage, but bales wrapped 19 h later exceeded 30 °C for the first 19 d during storage. Bales wrapped within 19 h had a lower (P < 0.05) water soluble carbohydrate content and a higher acid detergent insoluble N and ammonia N level compared to 2 and 10 h bales. The pH and 2, 3 butanediol levels were higher (P < 0.01) in 19 h compared to 2 and 10 h bale silage. A 64 d ensiling period was required to achieve minimum pH values in LBS wrapped with 10 h post-baling, the length of time being greater when wrapping was delayed to 19 h post-baling. Results from this study indicate that delaying bale wrapping to the next day resulted in a temperature rise, and poor silage protein quality. Wrapping 2 h post-baling was not an advantage to wrapping 10 h post-baling in whole crop barley ensiled as large bales. Key words: Silage, large bale, whole crop barley, delayed wrapping, ensiling characteristics

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Animal Science
    Article . 2000 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Animal Science
      Article . 2000 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sh.A. Bakhshetsyan; E.R. Gevorgyan; M.N. Mikayelyan;

    The current article is dedicated to the study of the possibility of obtaining alcoholic beverages made by fermenting natural honey (honey wine) using different types of dry active yeast and yeast autolysis derivatives. The data obtained from the results of the research will be interesting both from the scientific and production point of view and allow us to conclude that the selected yeasts can be used for the production of such alcoholic beverages.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Paula J. Fedorka-Cray; Peter B. Bahnson; S. R. Ladely;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.lib.iasta...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dr.lib.iastate.edu/bit...
    Conference object
    Data sources: UnpayWall
    https://doi.org/10.31274/safep...
    Conference object . 1999 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.lib.iasta...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dr.lib.iastate.edu/bit...
      Conference object
      Data sources: UnpayWall
      https://doi.org/10.31274/safep...
      Conference object . 1999 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rohini Darade; V.G. Atkare; Seema Chaudhary;

    The three different types of whey viz., Paneer, Chakka and channa were utilized as base material for preparation of whey-potato fermented product. This product was prepared by adjustment of pH of whey at 6.4, addition of potato (nearly 30%) to the level of milk solids (12.69%), fermentation with LF-40 starter culture (2%), by incubating at 30±1 0 C for 12 hr, sweetening with 5 per cent sugar, packaging in cups and store at 5-7 0 C, be adopted. Channa whey system (T 2 ) produced organolepticaly superior product but samples T 4 (Equal quantity of three whey ) and T 0 ( Plain lassi ) were also comparable to them. The addition of vanilla (essence) @ 0.06 ml and pista (colour) @ 0.03 ml per 100 ml of whey potato fermented product had more acceptability as compared to without addition of them. Considerable increase in the sensory score (8.30 ± 0.12) was observed due to preparation of Kadhi prepared from whey potato fermented product. Consumers appreciated the plain whey potato fermented product with remark of “very good to excellent”.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert