FundRef: 501100004794
ISNI: 0000000121129282 , 0000000122597504
One of the most powerful ideas of the past quarter century is that our personal and social identities and their various components (gender, age, class etc.) are not natural properties, but are socially constructed through the combination of our actions and others' interpretations of them. Research in sociolinguistics has shown that language is critical to this process, and our interlocutors take into account not only what we say but also how we say it. For example, studies have shown that speakers using colloquial expressions (like pronouncing the word 'drinking' as drinkin') are perceived to be friendlier than speakers saying the same thing using more formal expressions (i.e. saying drinking). On the other hand, the latter are often perceived to be more competent than those using colloquial language. Although identity construction through language is a fundamental notion in the humanities and social sciences, we do not yet have a precise characterization of the cognitive processes involved. As a result, these influential ideas have remained isolated from work in cognitive science, computer science and artificial intelligence. The goal of SMIC is therefore to construct a mathematically explicit, computationally implemented theory of the identity construction process based on the hypothesis that identity construction is very similar to other kinds of linguistic communication, i.e. hearing drinkin' and thinking that the speaker is friendly is the same basic cognitive process as hearing drinkin' and thinking about imbibing liquid. Modeling linguistic communication is a central concern of formal pragmatics, and recent developments in this field have created exciting new experimental, mathematical and computational tools for studying linguistic meaning in context. SMIC aims to take advantage of these developments to build the model, and, in doing so, unite diverse lines of research across the social, cognitive and information sciences.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3369c6ba7147d310eaa1a952e00f8f36&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3369c6ba7147d310eaa1a952e00f8f36&type=result"></script>');
-->
</script>
The UltraStabLaserViaSHB project seeks to catch the currently elusive grand prize of time and frequency metrology: a frequency source with a relative stability on the order of 10^-18 at 1 s. The desirability of this goal is borne of the near-future redefinition of the SI unit of time, the second. As optical atomic clocks surpass microwave-frequency atomic clocks in accuracy, the switch to an optical definition of the second drives the metrology field to strive to the fundamental performance limit of optical clocks, the quantum projection noise limit. Currently, optical clock performance is limited by frequency fluctuations of the optical-cavity-stabilized laser field which probes the atoms' optical transition. The optical lattice clocks located at SYRTE could reach their quantum projection limit if a probe laser with a sufficient frequency stability could be realized. The project proposed here seeks develop an ultra frequency stable laser at SYRTE to reach this performance via a paradigm shift in laser stabilization, away from optical cavity frequency references (which themselves approach their fundamental limit, Brownian noise) and toward a novel method: laser stabilization via spectroscopy of rare-earth ion doped crystals. This is achieved through a technique called Spectral Hole Burning (SHB) where a spectral pattern is imprinted on the crystal at cryogenic temperatures by a pre-stabilized laser (a spectral "hole" is "burnt"). A probe beam then interacts with this spectral hole and the resulting de-phasing of the probe beam provides the source for a control signal which allows us to actuate the probe laser, stabilizing it to the narrow line of the rare earth ion. Early results in this young technique are extremely promising and its limits are yet undiscovered. The result will impact not only time metrology, but all fields which rely on ultra-stabilized lasers such as gravitational-wave detection, fundamental constant measurements, and tests of general relativity.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::793b914ed3e0a4adf295051936bf870e&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::793b914ed3e0a4adf295051936bf870e&type=result"></script>');
-->
</script>
Cell migration is essential for tissue development, homeostasis, tumor progression, including the responses to wounds and inflammation. Cell interactions with their microenvironment affect many cellular functions such as spreading, migration and even differentiation. These interactions can be studied by incorporating micro- and nanotechnology-related tools. The design of substrates based on these technologies offers new possibilities to probe the cellular responses to changes in their physical environment. The investigations of the physical interactions of cells and their surrounding matrix can be carried out in well-defined and near physiological conditions. In tissues, cells encounter confined environments and narrow spaces that could favor or prevent migration. In the DURACELL ERC project, we are studying the impact of substrate stiffness on cell migration. We propose to develop and use microfabricated substrates to control substrate confinement and topography and thus analyze cellular responses. Such elastomeric substrates are designed that contain ordered micron-sized pillars allowing cells to transmigrate through versatile confined spaces. The development of accurate methods to study cellular transmigration is important to answer fundamental biological processes and for cell-based therapy and drug screening. The well-accepted methods for transmigration assays including Boyden chambers, microfluidic devices present important limitations including spatial and temporal resolutions, limited variability and control of porosity composition and geometry. To overcome these limitations, the goal of TRANSCELL is to develop in-plane micropillar substrates whose geometry can be easily tuned to control and analyze cell transmigration, cell sorting and ultimately genetic expression profiles. We anticipate that the versatility of this method will offer new opportunities for fundamental research in cell biology, but also in cell therapies and drug screening.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1ed75c5544b66cbfbecddabab7d396b1&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1ed75c5544b66cbfbecddabab7d396b1&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::56f1872b66ca9e1d3c57bfafc7cf21c8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::56f1872b66ca9e1d3c57bfafc7cf21c8&type=result"></script>');
-->
</script>
Are there new fundamental particles and interactions Beyond the Standard Model of particle physics (BSM)? The most fascinating open questions in our current understanding of Nature support a positive answer. For example, the dark matter in our universe could be explained by new fundamental particles weakly coupled to the SM. Similarly, the unexplained Charge-Parity symmetry violation in strong interactions can be solved by introducing a new light particle, the axion. Some recent, intriguing anomalies in cosmic radiation have thrilled the community as potential evidence for new physics BSM. My project will shed new light on them by exploiting forthcoming observations of the very high energy sky with innovative techniques. A long-standing excess of gamma-rays at GeV energies is measured towards the Galactic Center (GCE), and could be the very first signature of particle dark matter in our Galaxy. Cosmic ray accelerators could also explain the signal, but numerous modeling uncertainties prevent to firmly assess their contribution to the excess. I will use gamma rays at TeV energies to robustly characterise the TeV halos of cosmic ray accelerators and their contribution to the GCE, thus closing on the dark matter properties compatible with it. Besides, these sources will serve as an unique laboratory to constrain cosmic ray acceleration and propagation in the interstellar medium. This work will be instrumental to deeply investigate a new, promising signatures of photon-axion interactions, that is the modulation of the gamma-ray spectrum of Galactic cosmic ray accelerators. By exploiting the unprecedented energy resolution of forthcoming gamma-ray data at very high energy, I will search for axion-like-particle signatures in a yet unexplored parameter space. At LAPTh I will have access to the crucial expertise needed to successfully carry out the designed project, which will strategically complement my current research profile to flourish as a senior researcher.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0e234c9655a6574e5e897ab14fc73278&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0e234c9655a6574e5e897ab14fc73278&type=result"></script>');
-->
</script>