
Data Centers (DCs) need to manage their servers periodically to meet user demand efficiently. Since the cost of the energy employed to serve the user demand is lower when DC settings (e.g. number of active servers) are done a priori (proactively), there is a great interest in studying different proactive strategies based on predictions of requests. The amount of savings in energy cost that can be achieved depends not only on the selected proactive strategy but also on the statistics of the demand and the predictors used. Despite its importance, due to the complexity of the problem it is difficult to find studies that quantify the savings that can be obtained. The main contribution of this paper is to propose a generic methodology to quantify the possible cost reduction using proactive management based on predictions. Thus, using this method together with past data it is possible to quantify the efficiency of different predictors as well as optimize proactive strategies. In this paper, the cost reduction is evaluated using both ARMA (Auto Regressive Moving Average) and LV (Last Value) predictors. We then apply this methodology to the Google dataset collected over a period of 29 days to evaluate the benefit that can be obtained with those two predictors in the considered DC.
Energy cost, ARMAX, [INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], Data centers management, Pediction, Machine learning, Proactive management
Energy cost, ARMAX, [INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], Data centers management, Pediction, Machine learning, Proactive management
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
