doi: 10.14288/1.0043591
Author affiliation: University of Alberta Unreviewed Faculty Non UBC
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0043591&type=result"></script>');
-->
</script>
citations | 2 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0043591&type=result"></script>');
-->
</script>
doi: 10.14288/1.0044105
Author affiliation: Texas A&M Postdoctoral Unreviewed Non UBC
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0044105&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0044105&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/aoms/1177693337&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 29 | |
popularity | Average | |
influence | Top 10% | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/aoms/1177693337&type=result"></script>');
-->
</script>
Motivated by the work of Nazarov and Shapiro on the unit disk, we study asymptotic Toeplitzness of composition operators on the Hardy space of the unit sphere in C^n. We extend some of their results but we also show that new phenomena appear in higher dimensions. 13 pages, to appear in Complex Variables and Elliptic Equations
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17476933.2013.836189&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 3 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17476933.2013.836189&type=result"></script>');
-->
</script>
handle: 11697/145246
In this paper we show the emergence of polycrystalline structures as a result of elastic energy minimisation. For this purpose, we introduce a variational model for two-dimensional systems of edge dislocations, within the so-called core radius approach, and we derive the $Γ$-limit of the elastic energy functional as the lattice space tends to zero. In the energy regime under investigation, the symmetric and skew part of the strain become decoupled in the limit, the dislocation measure being the curl of the skew part of the strain. The limit energy is given by the sum of a plastic term, acting on the dislocation density, and an elastic term, which depends on the symmetric strains. Minimisers under suitable boundary conditions are piece-wise constant antisymmetric strain fields, representing in our model a polycrystal whose grains are mutually rotated by infinitesimal angles.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1137/18m118726x&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 8 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1137/18m118726x&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22436/jnsa.009.06.125&type=result"></script>');
-->
</script>
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22436/jnsa.009.06.125&type=result"></script>');
-->
</script>
Three tables provide coefficients for polynomial approximations of Student's t and chi-square percentage points at 10 probability levels, with relative error less than .00005
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/03610918008812183&type=result"></script>');
-->
</script>
bronze |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/03610918008812183&type=result"></script>');
-->
</script>
Knutson and Miller (2005) established a connection between the anti-diagonal Gröbner degenerations of matrix Schubert varieties and the pre-existing combinatorics of pipe dreams. They used this correspondence to give a geometrically-natural explanation for the appearance of the combinatorially-defined Schubert polynomials as representatives of Schubert classes. Recently, Hamaker, Pechenik, and Weigandt (2022) proposed a similar connection between diagonal degenerations of matrix Schubert varieties and bumpless pipe dreams, newer combinatorial objects introduced by Lam, Lee, and Shimozono (2021). Hamaker, Pechenik, and Weigandt described new generating sets of the defining ideals of matrix Schubert varieties and conjectured a characterization of permutations for which these generating sets form diagonal Gröbner bases. They proved special cases of this conjecture and described diagonal degenerations of matrix Schubert varieties in terms of bumpless pipe dreams in these cases. The purpose of this paper is to prove the conjecture in full generality. The proof uses a connection between liaison and geometric vertex decomposition established in earlier work with Rajchgot (2021).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5802/alco.296&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 2 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5802/alco.296&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00401706.1982.10487768&type=result"></script>');
-->
</script>
bronze |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00401706.1982.10487768&type=result"></script>');
-->
</script>
We re-examine through an example the connection between the curvature of the boundary of a set, and the decay at infinity of the Fourier transform of its characteristic function. Let $B_p\subset\mathbb{R}^2$ denote the unit ball of $\mathbb{R}^2$ in the $l^p$-norm. It is a consequence of a classical result of Hlawka that for each $p\in(1,2]$, there exists $C(p)>0$ such that $$ |\widehatχ_{B_p}(ω)|\le \frac{C(p)}{|ω|^{3/2}}\quad(ω\in\mathbb{R}^2, |ω|\text{ large}). $$ The above estimate does not hold for $p=1$. Thus, one expects that $C(p)\rightarrow\infty$ as $p\rightarrow1+$; we determine the sharp asymptotic behaviour of $C(p)$ as $p\rightarrow1+$.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2208.07837&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2208.07837&type=result"></script>');
-->
</script>
doi: 10.14288/1.0043591
Author affiliation: University of Alberta Unreviewed Faculty Non UBC
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0043591&type=result"></script>');
-->
</script>
citations | 2 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0043591&type=result"></script>');
-->
</script>
doi: 10.14288/1.0044105
Author affiliation: Texas A&M Postdoctoral Unreviewed Non UBC
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0044105&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14288/1.0044105&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/aoms/1177693337&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 29 | |
popularity | Average | |
influence | Top 10% | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1214/aoms/1177693337&type=result"></script>');
-->
</script>
Motivated by the work of Nazarov and Shapiro on the unit disk, we study asymptotic Toeplitzness of composition operators on the Hardy space of the unit sphere in C^n. We extend some of their results but we also show that new phenomena appear in higher dimensions. 13 pages, to appear in Complex Variables and Elliptic Equations
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17476933.2013.836189&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 3 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17476933.2013.836189&type=result"></script>');
-->
</script>
handle: 11697/145246
In this paper we show the emergence of polycrystalline structures as a result of elastic energy minimisation. For this purpose, we introduce a variational model for two-dimensional systems of edge dislocations, within the so-called core radius approach, and we derive the $Γ$-limit of the elastic energy functional as the lattice space tends to zero. In the energy regime under investigation, the symmetric and skew part of the strain become decoupled in the limit, the dislocation measure being the curl of the skew part of the strain. The limit energy is given by the sum of a plastic term, acting on the dislocation density, and an elastic term, which depends on the symmetric strains. Minimisers under suitable boundary conditions are piece-wise constant antisymmetric strain fields, representing in our model a polycrystal whose grains are mutually rotated by infinitesimal angles.