
Resume Soit Rm (respectivement RM) le rayon du plus grand (respectivement plus petit) disque centre a l'origine et inclus dans (respectivement contenant) la cellule typique de la mosaique de Poisson–Voronoi deux-dimensionnelle. Dans ce travail, nous obtenons la loi conjointe de Rm et RM. Pour cela nous faisons appel a des techniques classiques de recouvrement du cercle dues a Stevens, Siegel et Holst ainsi qu'a une conjecture de Siegel que nous demontrons. Le calcul des probabilites conditionnelles P {R M ⩾r+s∣R m =r} permet de preciser le caractere circulaire des cellules typiques de Poisson–Voronoi admettant un « grand » disque inscrit. Pour citer cet article : P. Calka, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 325–330.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
