
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.2307/3315747
AbstractWe propose a class of state‐space models for multivariate longitudinal data where the components of the response vector may have different distributions. The approach is based on the class of Tweedie exponential dispersion models, which accommodates a wide variety of discrete, continuous and mixed data. The latent process is assumed to be a Markov process, and the observations are conditionally independent given the latent process, over time as well as over the components of the response vector. This provides a fully parametric alternative to the quasilikelihood approach of Liang and Zeger. We estimate the regression parameters for time‐varying covariates entering either via the observation model or via the latent process, based on an estimating equation derived from the Kalman smoother. We also consider analysis of residuals from both the observation model and the latent process.
Generalized linear models (logistic models), time-varying covariates, residual analysis, dynamic generalized linear model, Inference from stochastic processes and prediction, Time series, auto-correlation, regression, etc. in statistics (GARCH), estimating equation, Kalman filter, Tweedie class, exponential dispersion model, smoother
Generalized linear models (logistic models), time-varying covariates, residual analysis, dynamic generalized linear model, Inference from stochastic processes and prediction, Time series, auto-correlation, regression, etc. in statistics (GARCH), estimating equation, Kalman filter, Tweedie class, exponential dispersion model, smoother
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
