3D spatial auditory displays can provide accurate information about the relation between the sound source and the surrounding environment, including the listener and his/her body which acts as an additional filter.This information cannot be substituted by any other modality (e.g. visual or tactile). Nevertheless, today's spatial representation of audio tends to be simplistic, being multimodal systems currently integrated with simple stereo or surround sound. In IT'S A DIVE extremely innovative techniques for binaural sound rendering will be developed, following a multidisciplinary approach encompassing different research areas such as computer science, acoustics, and psychology. The focus of the research program will be on structural modeling of head-related transfer functions (HRTFs), i.e. a family of state-of-the-art modeling techniques that overcome the current limitations of headphone-based 3D audio systems. The customization of the HRTF model based on the user's anthropometry will grant to any user a low-cost and real-time fruition of realistic individual 3D audio, previously only possible with expensive equipment and invasive recording procedures. The main objective of the research program will be the definition and experimental validation (through subjective psychophysical tests) of a completely customizable structural model for binaural sound presentation, which is today still missing in the literature on spatial audio. The technical focus will be on the exploitation of a vast number of public HRTF databases, including custom controlled acoustical measurements, and of state-of-the-art machine learning techniques in order to customize HRTFs by incorporating prior knowledge on the relation between HRTF features and anthropometry. The research program is expected to represent an innovative breakthrough for a plethora of applications, e.g. personal cinema, teleconferencing and teleoperation systems, electronic travel aids, and computer games.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::b63b0f97ef4cf23d3cda2cfb87e5fa24&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::b63b0f97ef4cf23d3cda2cfb87e5fa24&type=result"></script>');
-->
</script>
Location of Things (LoT) is an Internet of Things paradigm for mobility analytics. In LoT, massive mobility data is being gathered, processed and transmitted among heterogeneous data nodes in a decentralized architecture. Traditional centralized data quality management techniques cannot cope with such characteristics of LoT, making the management of data quality for LoT a prominent challenge. In the project MALOT, the researcher aims at designing a set of new techniques that are particularly adaptive to the decentralized and heterogeneous LoT architecture for assessing and enhancing mobility data quality. Specifically, the research actions of MALOT include (1) a core model for assessing mobility data quality at decentralized and dynamic data nodes; (2) effective quality-aware data enhancement algorithms to handle the heterogeneity and inconsistency of LoT mobility data; (3) a mechanism for scheduling quality management tasks among relevant nodes in an efficiency-optimal fashion. With the research actions dedicated to decentralized modelling, heterogeneous data integration, and mobile task planning, MALOT will firmly strengthen the researcher's scientific skills and innovative competences. Through many inter-sectoral training and communication activities planned for the project, the researcher will have great opportunities to diversify his skillsets and enhance his future career prospects. A two-way knowledge transfer is guaranteed since MALOT combines the researcher's expertise in mobility analytics and the participating organizations' expertise in big data management and decentralized information systems. Committed to the mobility data quality management for IoT-like architecture, MALOT is not only expected to benefit the academic development of the host and the researcher but will contribute to Europe's IoT innovation and applications.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::50e2ffaa55982cf8fdcb6693072bb172&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::50e2ffaa55982cf8fdcb6693072bb172&type=result"></script>');
-->
</script>
African Swine Fever is a notifiable devastating hemorrhagic fever with high mortality rates in pigs. It affects all members of the Suidae family and is one of the most important pig diseases due to its severe socio-economic consequences for affected countries, the difficulty of preventing spread across country boundaries, and the lack of vaccine and therapeutic control measures. We will use genome-wide DNA technologies to understand the Sus scrofa genomic response to the infection. Specifically, we will compare data on both healthy and infected individuals to (1) identify the possible presence of regions under selection. We will also assess (2) the hybridization rate and (3) the interaction strategies between the domestic pig and the wild boar to (4) identify the possible transmission routes in pig diseases.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4c4b4260d54d5ea7af3d60b74811c725&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4c4b4260d54d5ea7af3d60b74811c725&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::1cf519ba031ad0c40374b29e7b1d4cb1&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::1cf519ba031ad0c40374b29e7b1d4cb1&type=result"></script>');
-->
</script>
The transport sector is the highest consumer of fossil fuels accounting for 96% of the global energy, which correspond to 65% of the global crude oil consumption. The escalating consumption of fossil fuel causes deleterious environmental pollution by releasing > 7 billion tons of CO2 in the atmosphere. The awareness to transition from conventional fossil fuel to eco-friendly options has resulted in several decarbonization strategies with Europe’s priority to develop new alternative and carbon-neutral energy sources based on a cost-effective biomass-based thermochemical conversion. Hence, the objective of CO-HTL4BIO-OIL is to develop commercially viable catalytic co-hydrothermal liquefaction (CO-HTL) that converts 2G wet solid food by-products such as rye straw, shellfish, and beef tallow into a sustainable transport fuel with potential 100% atom efficiency, low production costs, and zero CO2 emissions. The specific experiments include: (1) identify proper pretreatment prior to CO-HTL for efficient removal of undesirable heteroatoms (2) validate baseline Lab-scale CO-HTL by determining integrated models of HTL parameters and proportions of binary/ternary mixtures; (3) establish efficient catalytic upgrading to bring the HTL intermediate bio-crude oil to drop-in transport fuel; (4) carry out bench-scale HTL for techno-economic assessment. It is anticipated that an in-depth study on the HTL parameters, optimization of the CO-HTL process, and techno-economic assessment will provide an outlook scenario of the industrial-scale process for high biofuels production capacity. Therefore, CO-HTL4BIO-OIL will diversify my scientific competences in renewable energy and equip me with new transferable skills. Thus, combining my skills in carbon-based biomaterials with the host’s expertise in advanced biofuels, a mutual benefit will be realized. The project will positively impact Europe’s knowledge-based economy and society towards sustainable and green transportation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e3fc3fdbf1b49ffb2bac7f7602cf2fa3&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e3fc3fdbf1b49ffb2bac7f7602cf2fa3&type=result"></script>');
-->
</script>