ISNI: 0000000419367494
RRID: RRID:SCR_011529 , RRID:nlx_81338
Wikidata: Q201603
FundRef: 501100004326
ISNI: 0000000419367494
RRID: RRID:SCR_011529 , RRID:nlx_81338
Wikidata: Q201603
FundRef: 501100004326
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::e412364a0e09941e9a3bedf39cc9b509&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::e412364a0e09941e9a3bedf39cc9b509&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::aaec8370928393aa87c65d5083371a65&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=nsf_________::aaec8370928393aa87c65d5083371a65&type=result"></script>');
-->
</script>
Submarine landslides can be far larger than terrestrial landslides, and many generate destructive tsunamis. The Storegga Slide offshore Norway covers an area larger than Scotland and contains enough sediment to cover all of Scotland to a depth of 80 m. This huge slide occurred 8,200 years ago and extends for 800 km down slope. It produced a tsunami with a run up >20 m around the Norwegian Sea and 3-8 m on the Scottish mainland. The UK faces few other natural hazards that could cause damage on the scale of a repeat of the Storegga Slide tsunami. The Storegga Slide is not the only huge submarine slide in the Norwegian Sea. Published data suggest that there have been at least six such slides in the last 20,000 years. For instance, the Traenadjupet Slide occurred 4,000 years ago and involved ~900 km3 of sediment. Based on a recurrence interval of 4,000 years (2 events in the last 8,000 years, or 6 events in 20,000 years), there is a 5% probability of a major submarine slide, and possible tsunami, occurring in the next 200 years. Sedimentary deposits in Shetland dated at 1500 and 5500 years, in addition to the 8200 year Storegga deposit, are thought to indicate tsunami impacts and provide evidence that the Arctic tsunami hazard is still poorly understood. Given the potential impact of tsunamis generated by Arctic landslides, we need a rigorous assessment of the hazard they pose to the UK over the next 100-200 years, their potential cost to society, degree to which existing sea defences protect the UK, and how tsunami hazards could be incorporated into multi-hazard flood risk management. This project is timely because rapid climatic change in the Arctic could increase the risk posed by landslide-tsunamis. Crustal rebound associated with future ice melting may produce larger and more frequent earthquakes, such as probably triggered the Storegga Slide 8200 years ago. The Arctic is also predicted to undergo particularly rapid warming in the next few decades that could lead to dissociation of gas hydrates (ice-like compounds of methane and water) in marine sediments, weakening the sediment and potentially increasing the landsliding risk. Our objectives will be achieved through an integrated series of work blocks that examine the frequency of landslides in the Norwegian Sea preserved in the recent geological record, associated tsunami deposits in Shetland, future trends in frequency and size of earthquakes due to ice melting, slope stability and tsunami generation by landslides, tsunami inundation of the UK and potential societal costs. This forms a work flow that starts with observations of past landslides and evolves through modelling of their consequences to predicting and costing the consequences of potential future landslides and associated tsunamis. Particular attention will be paid to societal impacts and mitigation strategies, including examination of the effectiveness of current sea defences. This will be achieved through engagement of stakeholders from the start of the project, including government agencies that manage UK flood risk, international bodies responsible for tsunami warning systems, and the re-insurance sector. The main deliverables will be: (i) better understanding of frequency of past Arctic landslides and resulting tsunami impact on the UK (ii) improved models for submarine landslides and associated tsunamis that help to understand why certain landslides cause tsunamis, and others don't. (iii) a single modelling strategy that starts with a coupled landslide-tsunami source, tracks propagation of the tsunami across the Norwegian Sea, and ends with inundation of the UK coast. Tsunami sources of various sizes and origins will be tested (iv) a detailed evaluation of the consequences and societal cost to the UK of tsunami flooding , including the effectiveness of existing flood defences (v) an assessment of how climate change may alter landslide frequency and thus tsunami risk to the UK.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::54c3bfe0f60e2c26fa8716a2a09e0d27&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::54c3bfe0f60e2c26fa8716a2a09e0d27&type=result"></script>');
-->
</script>
MRC : Michael Glenn: G90894F The cornea is the thin, transparent layer at the front of eye which focuses light and protects against environmental irritants. If the cornea is damaged it can become susceptible to infection by microorganisms and then becomes inflamed, a condition known as 'keratitis'. This can result in the development of corneal ulcers, open sores which cause the cornea to become opaque and can lead to rapid loss of vision. The major risk factor for keratitis in western countries such as the UK and Canada is the misuse of contact lenses. Overnight wear or the improper cleaning of the lenses provides an environment for harmful bacteria to thrive. Keratitis is thus a severe, sight-threatening condition which requires rapid treatment in order to limit damage and preserve sight. Current treatment relies on aggressive use of antibiotics, an approach which is becoming less effective due to the alarming rise in antibiotic resistance. To combat this threat we need to develop improved diagnostic tools that can guide more targeted therapies. I believe that such tools can be developed by studying the DNA sequences of the bacteria which cause the infections. This genomic approach could augment or even replace the current assays which rely on growing the bacteria in the lab, a process that takes days to weeks to provide a result. My work to date has used a technique known as 'whole genome sequencing' (WGS) to obtain the complete DNA sequences or 'genomes' of the bacteria that have caused ~100 cases of keratitis in the UK. We now need to analyse these genomes in great detail and look for features inherent to keratitis pathogens. For example, genes which infer resistance to the major antibiotic drug classes. This will help to explain how the disease progresses and form the basis of new rapid diagnostic tests that will be able to detect similar bacteria that are present in new cases of keratitis. The aim of the proposed exchange visit to Canada is to facilitate this analysis of the genome sequences. This presents a considerable challenge because each genome comprises ~3 million letters or 'nucleotides'. Professor Brinkman's laboratory in Simon Fraser University (SFU), in Vancouver is a world leader in the development of software designed specifically to interrogate genome sequences. During my stay at her lab in the computational hub at SFU I will firstly compare all my keratitis genome sequences and others available in databases to identify common elements potentially involved in the disease. I will then apply tools designed specifically to investigate antimicrobial gene resistance profiles. Phylogenetic analysis will then be used to generate a 'family tree' that will reveal the relatedness between the different bacterial strains that cause keratitis. Detailed analysis of the proteins encoded by the keratitis bacteria will enable prioritization of targets for future development of therapeutic agents to treat the condition. The experience gained working with a team of bioinformaticians will greatly increase my computational skills and promote my future career in this expanding field. The anticipated outcome from the exchange visit is a better understanding of the genomic features of the bacteria which cause keratitis. This will guide my development of diagnostic tests back in my home laboratory in Queen's University Belfast. This will contribute to the long term goal of guiding treatment selection to facilitate a more personalized and effective approach for patients with keratitis.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::61454c60fa6c8a1c89cc1be574b421f4&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::61454c60fa6c8a1c89cc1be574b421f4&type=result"></script>');
-->
</script>
Hydraulic fracturing ('fracking') is a technology that allows the extraction of unconventional fossil fuel resources (oil and gas). The technology has been widely used in North America over the last decade but is in a much earlier stage of development in the UK. Government policy in the UK is actively encouraging the deployment of this technology and test drilling has taken place at several sites in the UK. There has been significant policy and public controversy around the use of the technology: it is simultaneously viewed by some actors as a novel and risky technology with the potential to adversely affect public health and the environment, but by others as rather more mundane and manageable. Shale gas, furthermore, is viewed by some as able to help the UK meet emissions reduction objectives but by others as hindering this task. Finally, the governance of shale gas development is also a source of conflict, with varying ideas about the ways and extent to which publics and local communities should have a say in policy and decision-making. This contested nature of shale development amongst different groups and stakeholders represents a key socio-political challenge for development in the UK. We analyse this challenge as arising from distinct ways of understanding and viewing the fracking issues ('framing') amongst different kinds of actors. We aim to improve understanding of this socio-political challenge facing shale development in the UK through an investigation of the relationships between three distinct but related research areas: public perceptions of the issue, policy debates ('frames') around shale gas and fracking, and formal processes of public engagement and participation on the matter. A nationally representative survey of public perceptions, as well as in-depth interviewing in a local community case study (the Fylde, Lancashire), will provide a better understanding of public perceptions on fracking for shale and the actors and processes of its governance, and the public acceptability of shale development in the UK. Policy debates will be analysed to better understand the arguments ('frames') put forward by advocates, their contestation, and how these debates have shaped and continue to shape UK policy. Finally, formal processes of public engagement and participation will be examined in order to assess the extent to which they help to resolve or amplify the public acceptance challenge for shale development in the UK. We are particularly interested in the relationships between these three research areas. For example, we ask, how well do policy debates reflect public views? And can the public influence decision making? Research findings will be of interest to policy makers, industry actors, regulators, environmental groups, and members of the public with an interest in the issue of fracking and shale gas development specifically, but also the issues of climate change, democracy and social controversies over technology more broadly. The primary benefit of the research will be to provide both a better understanding of the scale and nature of the social and political challenges facing shale gas development in UK, and a better understanding of the potential of public participation and engagement to help address these challenges.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e709ed9d62f7966898f6295a355559c0&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e709ed9d62f7966898f6295a355559c0&type=result"></script>');
-->
</script>