Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Systematic Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Systematic Biology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2014
Data sources: Hal
Systematic Biology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Bayesian Method for Analyzing Lateral Gene Transfer

Authors: Sjöstrand, Joel; Tofigh, Ali; Daubin, Vincent; Arvestad, Lars; Sennblad, Bengt; Lagergren, Jens;

A Bayesian Method for Analyzing Lateral Gene Transfer

Abstract

Lateral gene transfer (LGT)--which transfers DNA between two non-vertically related individuals belonging to the same or different species--is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools. The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a pre-computed gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies, simple heuristics are applied that can only handle putative orthologs and completely disregard gene duplications (GDs). Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates the number of LGT and duplication events.

Keywords

[SDE] Environmental Sciences, MCMC, Gene Transfer, Horizontal, gene duplication, Bayes Theorem, gene loss, Models, Theoretical, Classification, Cyanobacteria, lateral gene transfer, Bayesian, [SDV] Life Sciences [q-bio], Evolution, Molecular, phylogenetics], [SDV.BID.SPT] Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy, horizontal gene transfer, Phylogeny, Tenericutes, [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze