ISNI: 0000000121581746
Wikidata: Q854280
FundRef: 501100004270
RRID: RRID:SCR_000992 , RRID:nlx_48999
ISNI: 0000000121581746
Wikidata: Q854280
FundRef: 501100004270
RRID: RRID:SCR_000992 , RRID:nlx_48999
Modern fluorescence microscopy can provide rapid, real-time functional imaging of brain activities (light sheet) or to visualize with high definition and specificity the synaptic organization (super resolution, expansion). However, rapidity and precision are still too far apart to allow studies of fast dynamics with intra-synaptic precision mainly due to incompatible optical and probes requirements in current technologies. My aim is to fill this gap with the development of an optical platform, named InSpIRe, which allows real-time volumetric imaging of brain tissues with intra-synaptic level of details thanks to a new optical scheme coupled to the photo-switching properties of recently engineered red-shifted probes. InSpIRe will take advantage of rsFusionRed, a new palette of reversibly switching fluorescent proteins, which we recently introduced. The contrast and photo-resistance of rsFusionRed imaging will be increased with an optical strategy that uncouple the geometry of the illumination for switching and fluorescence excitation, which we demonstrated in our MoNaLISA microscope. In InSpIRe these concepts are brought to a new level to record volumetric dynamics in brain tissues without compromising resolution and speed. We will craft a new interference pattern, which optically imprint small-sub-resolved- volumes of rsFusionRed in the 3D tissues architecture. These volumes will be read-out with an oblique sheet of light to increase speed and minimize photo-bleaching. Unlike lattice light sheet we use one objective lens, which increases the slice accessibility and unlike STED/STORM the acquisition is faster. InSpIRe will record movies with molecular resolution without losing the larger neuronal architecture, which can shine light to open question in the field of organelles trafficking. As a proof of principle, we will study the dynamics of the endoplasmic reticulum, which are little known in synapses, and which we could, for the first time, show with precision.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4c716fbc6050f51d2b79bc92e0e07792&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4c716fbc6050f51d2b79bc92e0e07792&type=result"></script>');
-->
</script>
The endoplasmic reticulum (ER) can rapidly reorganize its functional domains and inter-organelle communication sites in response to cellular demands. ER-mitochondria communication is essential for normal cell physiology, as it conveys lipid exchange, mitochondrial calcium uptake, among other vital processes for mitochondrial function. In neurons, activity-mediated dynamics of ER and mitochondria are required for synaptic responsiveness to induction of synaptic plasticity and stimulating neuronal activity increases the number of ER-mitochondria contact sites (ERMCSs). Whilst system modelling predicts that ERMCSs control the postsynaptic energy landscape, the actual contribution of synaptic and perisynaptic inter-organelle dynamics to synaptic plasticity is still quite unknown. The small and compact structure of dendrites constrains the visualization of local ER-mitochondria contact site dynamics, being the application of nanoscopy techniques fundamental to follow these processes upon induction of synaptic plasticity. The use of cutting-edge super-resolution microscopy in this project will provide unprecedented spatiotemporal resolution to the study of activity-mediated ER and mitochondria dynamics and inter-organelle contacts heterogeneity in live neurons. Likewise, it will clarify the contribution of ERMCSs to sustain normal dendritic physiology as well as the intricate system triggering and upholding synaptic plasticity. Dysfunction of the ERMCSs has been reported in various neurodegenerative disorders due to mutation in proteins promoting and supporting ER-mitochondria communication. Neurodegenerative disorders are responsible for a great burden in disease, as dementias alone affect over 7 million people in Europe and this figure is expected to increase dramatically with aging of the population.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::06bc44bba96f4723bf21f001a8c9c5db&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::06bc44bba96f4723bf21f001a8c9c5db&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f38f798abb19322f588bfdca64ca473a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f38f798abb19322f588bfdca64ca473a&type=result"></script>');
-->
</script>
A well-controlled microenvironment is paramount for reproducible biomolecular studies. Organs-on-chips are in-vitro cell culture systems that employ microfluidic and biomaterial engineering towards that goal. They combine the advantages of animal models (physiological environment) with those of plastic-dish culture (human cells), and thereby hold exceptional promise in unraveling the biological processes that underlie health and disease. Yet control over the biochemical environment remains poor. With CHIPzophrenia, I propose to develop a new generation of organ-chip, one that features feedback-enabled control of the biochemical environment. I aim to realize dynamic and well-controlled application of stable therapeutics (via feedback sensors and flow control), and crucially also of highly volatile oxygen/nitrogen stressors by relying on electrochemistry to generate them in situ. My goal is to moreover implement a highly functional modular architecture so that the system can easily be repurposed and sensor/control modules reused – all with negligible dead volumes and displacement (key challenges in current organ-chips towards novel functionalities). I intend to leverage this organ-chip to elucidate how nitrosative stressors disrupt the complex multicellular interactions of the blood-brain barrier, where existing in-vitro models fail to provide the requisite cellular and chemical microenvironment. Yet such disruption is implicated in a wide array of disorders – including schizophrenia, where our biological understanding remains poor and in-vivo models are uniquely challenging. I will specifically test the hypothesis that nitrosative dysregulation of perivascular cells plays a causative role in neuronal dysfunction associated with the disorder. Not only will CHIPzophrenia thus reveal new potential treatment targets, but it will also establish the platform as a transformative tool for dynamic and well-controlled in-vitro research into stress-related disorders and beyond.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::9c57b490f0f934f47caf8ac43fe3eb7e&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::9c57b490f0f934f47caf8ac43fe3eb7e&type=result"></script>');
-->
</script>
From Landscapes to Earthscapes: Understanding Visual Cultures of Global Environmental Crisis and the Making of Global Environmental Images, 1945-present (EARTHSCAPES) EARTHSCAPES will contribute to current debates on the origins and possible futures of the environmental crisis by providing an innovative historical, social and political perspective on the production, circulation and reception of global environmental images since the beginning of the Cold War. It will further our understanding of the role of images in science by means of a thorough historical, political and sociological analysis of case studies, focusing on visualisations that allow for a global interpretation and understanding of our environment (hence the term “global environmental images”). The images concerned by this project help communicate global and a priori invisible environmental phenomena (global temperature, ozone levels, sea-level rise, climate change, etc.). By making the invisible visible, global environmental images reveal to be always both, the very tools that enable scientists to understand complex environmental and geophysical processes, and the instruments that allow them to share their findings with decision makers and the larger public. Images fulfil therefore always two functions; they are both: objects and instruments of knowledge. Yet few studies have explored in detail this double function, allowing to understand how global environmental processes are visually produced, represented, rendered evident, and consumed. Hence, a historically informed interdisciplinary study is urgently needed, also because the past may hold crucial answers for the future. EARTHSCAPES main aim is to close the research gap by analysing how iconic paintings, photographs, maps, graphs, visualisations and remote sensing images profoundly shaped environmental discourse, and a holistic and dynamic understanding of the Earth system since the beginning of the Cold War.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::5dcbfffdcc78befd88608a4c2d428397&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::5dcbfffdcc78befd88608a4c2d428397&type=result"></script>');
-->
</script>