Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nonlinear Analysis
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nonlinear Analysis
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsteady non-Newtonian fluid flows with boundary conditions of friction type: The case of shear thinning fluids

Unsteady non-Newtonian fluid flows with boundary conditions of friction type: the case of shear thinning fluids
Authors: Boukrouche, Mahdi; Debbiche, Hanene; Paoli, Laetitia;

Unsteady non-Newtonian fluid flows with boundary conditions of friction type: The case of shear thinning fluids

Abstract

Following the previous part of our study on unsteady non-New\-to\-nian fluid flows with boundary conditions of friction type we consider in this paper the case of pseudo-plastic (shear thinning) fluids. The problem is described by a $p$-Laplacian non-stationary Stokes system with $p<2$ and we assume that the fluid is subjected to mixed boundary conditions, namely non-homogeneous Dirichlet boundary conditions on a part of the boundary and a slip fluid-solid interface law of friction type on another part of the boundary. Hence the fluid velocity should belong to a subspace of $L^p \bigl(0,T; (W^{1,p} (��)^3) \bigr)$, where $��$ is the flow domain and $T>0$, and satisfy a non-linear parabolic variational inequality. In order to solve this problem we introduce first a vanishing viscosity technique which allows us to consider an auxiliary problem formulated in $L^{p'} \bigl(0,T; (W^{1,p'} (��)^3) \bigr)$ with $p' >2$ the conjugate number of $p$ and to use the existence results already established in \cite{BDP2}. Then we apply both compactness arguments and a fixed point method to prove the existence of a solution to our original fluid flow problem.

Keywords

76A05, 35Q35 (Primary), 35K87, 76M30 (Secondary), shear thickening fluid, Variational methods applied to problems in fluid mechanics, unsteady \(p\)-Laplacian, shear thinning fluid: fixed point argument, Non-Newtonian fluids, PDEs in connection with fluid mechanics, fixed-point method, Mathematics - Analysis of PDEs, slip boundary frictional condition, non-linear parabolic variational inequality, FOS: Mathematics, Tresca friction model, [MATH]Mathematics [math], non-linear variational parabolic inequality, Slip boundary condition of friction type, vanishing viscosity method, monotonicity method, Stokes system, p-Laplacian, existence, Non-linear variational parabolic inequality, Variational inequalities, 620, de Rham theorem, Laplacian, Unsteady shear thickening fluid flow, Monotonicity methods, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green