Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astronomy and Astrophysics
Article . 2022 . Peer-reviewed
License: EDP Sciences Copyright and Publication Licensing Policy
Data sources: Crossref
Astronomy and Astrophysics
Article
License: EDP Sciences Copyright and Publication Licensing Policy
Data sources: Sygma
ZENODO
Presentation . 2021
License: CC BY
Data sources: Datacite
ZENODO
Presentation . 2021
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Astronomy and Astrophysics
Article . 2022 . Peer-reviewed
versions View all 11 versions
addClaim

Kepler-93: A testbed for detailed seismic modelling and orbital evolution of super-Earths around solar-like stars

Authors: Bétrisey, Jérôme; Pezzotti, Camilla; Buldgen, Gaël; Khan, Saniya; Eggenberger, Patrick; Salmon, Sébastien; Miglio, Andrea;

Kepler-93: A testbed for detailed seismic modelling and orbital evolution of super-Earths around solar-like stars

Abstract

Context. The advent of space-based photometry missions such as CoRoT, Kepler and TESS has sparkled the rapid development of asteroseismology and its synergies with exoplanetology. In the near future, the advent of PLATO will further strengthen such multi-disciplinary studies. In that respect, testing asteroseismic modelling strategies and their importance for our understanding of planetary systems is crucial. Aims. We carried out a detailed modelling of Kepler-93, an exoplanet host star observed by the Kepler satellite for which high-quality seismic data are available. This star is particularly interesting because it is a solar-like star very similar to the PLATO benchmark target (G spectral type, ∼6000 K, ∼1 M⊙ and ∼1 R⊙) and provides a real-life testbed for potential procedures to be used in the PLATO mission. Methods. We used global and local minimisation techniques to carry out the seismic modelling of Kepler-93, for which we varied the physical ingredients of the given theoretical stellar models. We supplemented this step by seismic inversion techniques of the mean density. We then used these revised stellar parameters to provide new planetary parameters and to simulate the orbital evolution of the system under the effects of tides and atmospheric evaporation. Results. We provide the following fundamental parameters for Kepler-93: ρ̄⋆ = 1.654 ± 0.004 g cm−3, M⋆ = 0.907 ± 0.023 M⊙, R⋆ = 0.918 ± 0.008 R⊙, and Age = 6.78 ± 0.32 Gyr. The uncertainties we report for this benchmark star are well within the requirements of the PLATO mission and give confidence in the ability of providing precise and accurate stellar parameters for solar-like exoplanet-host stars. For the exoplanet Kepler-93b, we find Mp = 4.01 ± 0.67 M⊕, Rp = 1.478 ± 0.014 R⊕, and a semi-major axis a = 0.0533 ± 0.0005 AU. According to our simulations of the orbital evolution of the system, it seems unlikely that Kepler-93b formed with a mass high enough (Mp, initial > 100 M⊕) to be impacted on its orbit by stellar tides. Conclusions. For the benchmark case of a solar twin of the PLATO mission, detailed asteroseismic modelling procedures will be able to provide fundamental stellar parameters within the requirements of the PLATO mission. We also illustrate the synergies that can be achieved regarding the orbital evolution and atmospheric evaporation of exoplanets when these parameters are obtained. We also note the importance of the high-quality radial velocity follow-up, which here is a limiting factor, for providing precise planetary masses and mean densities to constrain the formation scenarii of exoplanets.

Countries
Belgium, Switzerland, Italy
Keywords

Planet-star interactions, Planetary system, astro-ph.SR, Aérospatiale, astronomie & astrophysique, Physique, chimie, mathématiques & sciences de la terre, Star: individual - Kepler-93, KOI-69, KIC-3544595, FOS: Physical sciences, Stars: planetary systems, Physical, chemical, mathematical & earth Sciences, Star: individual: keple-93, Stars: individual: proxima Centauri, Solar and Stellar Astrophysics (astro-ph.SR), Stars: fundamental parameters, Earth and Planetary Astrophysics (astro-ph.EP), Stellar parameters, Orbital evolutions, Asteroseismology, Astronomy and Astrophysics, Planet–star interactions, 520, PLATO, Planetary systems, Stars:fundamental parameters, Asteroseismology; Planet-star interactions; Planetary systems; Stars: fundamental parameters; Stars: individual: Kepler-93, Astrophysics - Solar and Stellar Astrophysics, Space and Planetary Science, Stars: individual: Kepler-93, astro-ph.EP, Space science, astronomy & astrophysics, Exo-planets, Seismic model, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 26
    download downloads 13
  • 26
    views
    13
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Top 10%
Average
Top 10%
26
13
Green
bronze