Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB

Authors: Santoni, Maria Laura; Raponi, Elena; de Leone, Renato; Doerr, Carola;

Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB

Abstract

Bayesian Optimization (BO) is a class of surrogate-based black-box optimization heuristics designed to efficiently locate high-quality solutions for problems that are expensive to evaluate, and therefore allow only small evaluation budgets. BO is particularly popular for solving numerical optimization problems in industry, where the evaluation of objective functions often relies on time-consuming simulations or physical experiments. However, many industrial problems depend on a large number of parameters. This poses a challenge for BO algorithms, whose performance is often reported to suffer when the dimension grows beyond 15 decision variables. Although many new algorithms have been proposed to address this, it remains unclear which one is best suited for a specific optimization problem. In this work, we compare five state-of-the-art high-dimensional BO algorithms with vanilla BO, CMA-ES, and random search on the 24 BBOB functions of the COCO environment at increasing dimensionality, ranging from 10 to 60 variables. Our results confirm the superiority of BO over CMA-ES for limited evaluation budgets and suggest that the most promising approach to improve BO is the use of trust regions. However, we also observe significant performance differences for different function landscapes and budget exploitation phases, indicating improvement potential, e.g., through hybridization of algorithmic components.

Countries
France, Italy
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Bayesian Optimization, High-dimensional Bayesian Optimization, Machine Learning (stat.ML), [INFO] Computer Science [cs], Machine Learning (cs.LG), Benchmarking, Statistics - Machine Learning, Optimization and Control (math.OC), Black-box optimization, FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
Green