<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bayesian Optimization (BO) is a class of surrogate-based black-box optimization heuristics designed to efficiently locate high-quality solutions for problems that are expensive to evaluate, and therefore allow only small evaluation budgets. BO is particularly popular for solving numerical optimization problems in industry, where the evaluation of objective functions often relies on time-consuming simulations or physical experiments. However, many industrial problems depend on a large number of parameters. This poses a challenge for BO algorithms, whose performance is often reported to suffer when the dimension grows beyond 15 decision variables. Although many new algorithms have been proposed to address this, it remains unclear which one is best suited for a specific optimization problem. In this work, we compare five state-of-the-art high-dimensional BO algorithms with vanilla BO, CMA-ES, and random search on the 24 BBOB functions of the COCO environment at increasing dimensionality, ranging from 10 to 60 variables. Our results confirm the superiority of BO over CMA-ES for limited evaluation budgets and suggest that the most promising approach to improve BO is the use of trust regions. However, we also observe significant performance differences for different function landscapes and budget exploitation phases, indicating improvement potential, e.g., through hybridization of algorithmic components.
FOS: Computer and information sciences, Computer Science - Machine Learning, Bayesian Optimization, High-dimensional Bayesian Optimization, Machine Learning (stat.ML), [INFO] Computer Science [cs], Machine Learning (cs.LG), Benchmarking, Statistics - Machine Learning, Optimization and Control (math.OC), Black-box optimization, FOS: Mathematics, Mathematics - Optimization and Control
FOS: Computer and information sciences, Computer Science - Machine Learning, Bayesian Optimization, High-dimensional Bayesian Optimization, Machine Learning (stat.ML), [INFO] Computer Science [cs], Machine Learning (cs.LG), Benchmarking, Statistics - Machine Learning, Optimization and Control (math.OC), Black-box optimization, FOS: Mathematics, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |