Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Surveys in Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Surveys in Geophysics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Surveys in Geophysics
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Rennes 1
Article . 2020
Data sources: HAL-Rennes 1
Surveys in Geophysics
Article . 2020 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Remote Sensing for Assessing Landslides and Associated Hazards

Authors: Daniel Raucoules; Marcello de Michele; Christopher Gomez; Christopher Gomez; Annett Bartsch; Olivier Maquaire; Candide Lissak; +1 Authors

Remote Sensing for Assessing Landslides and Associated Hazards

Abstract

Multi-platform remote sensing using space-, airborne and ground-based sensors has become essential tools for landslide assessment and disaster-risk prevention. Over the last 30 years, the multiplicity of Earth Observation satellites mission ensures uninterrupted optical and radar imagery archives. With the popularization of Unmanned Aerial Vehicles, free optical and radar imagery with high revisiting time, ground and aerial possibilities to perform high-resolution 3D point clouds and derived digital elevation models, it can make it difficult to choose the appropriate method for risk assessment. The aim of this paper is to review the mainstream remote-sensing methods commonly employed for landslide assessment, as well as processing. The purpose is to understand how remote-sensing techniques can be useful for landslide hazard detection and monitoring taking into consideration several constraints such as field location or costs of surveys. First we focus on the suitability of terrestrial, aerial and spaceborne systems that have been widely used for landslide assessment to underline their benefits and drawbacks for data acquisition, processing and interpretation. Several examples of application are presented such as Interferometry Synthetic Aperture Radar (InSAR), lasergrammetry, Terrestrial Optical Photogrammetry. Some of these techniques are unsuitable for slow moving landslides, others limited to large areas and others to local investigations. It can be complicated to select the most appropriate system. Today, the key for understanding landslides is the complementarity of methods and the automation of the data processing. All the mentioned approaches can be coupled (from field monitoring to satellite images analysis) to improve risk management, and the real challenge is to improve automatic solution for landslide recognition and monitoring for the implementation of near real-time emergency systems.

Country
France
Keywords

710, Remote-sensing, [SPI.GCIV.RISQ]Engineering Sciences [physics]/Civil Engineering/Risques, [SDE.ES] Environmental Sciences/Environment and Society, [SDE.ES]Environmental Sciences/Environment and Society, [SPI.GCIV.RISQ] Engineering Sciences [physics]/Civil Engineering/Risques, Landslides, Hazard

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 75
  • 7
    views
    75
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
91
Top 1%
Top 10%
Top 1%
7
75
Green
hybrid