Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ physica status solid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
physica status solidi (a)
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
physica status solidi (a)
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
physica status solidi (a)
Article
License: Wiley Online Library User Agreement
Data sources: Sygma
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
physica status solidi (a)
Article . 2021 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Study of Al2O3 and HfO2 for Surface Passivation of Cu(In,Ga)Se2 Thin Films: An Innovative Al2O3/HfO2 Multistack Design

Authors: Romain Scaffidi; Dilara G. Buldu; Guy Brammertz; Jessica de Wild; Thierry Kohl; Gizem Birant; Marc Meuris; +3 Authors

Comparative Study of Al2O3 and HfO2 for Surface Passivation of Cu(In,Ga)Se2 Thin Films: An Innovative Al2O3/HfO2 Multistack Design

Abstract

In Cu(In,Ga)Se2 (CIGS) thin‐film solar cells, interface recombination is one of the most important limiting factors with respect to device performance. Herein, metal–insulator–semiconductor samples are used to investigate and compare the passivation effects of Al2O3 and HfO2 at the interface with CIGS. Capacitance–voltage–frequency measurements allow to qualitatively and quantitatively assess the existence of high negative charge density (Q f ≈ −1012 cm−2) and low interface‐trap density (D it ≈ 1011 cm−2 eV−1). At the rear interface of CIGS solar cells, these, respectively, induce field‐effect and chemical passivation. A trade‐off is highlighted between stronger field‐effect for HfO2 and lower interface‐trap density for Al2O3. This motivates the usage of Al2O3 to induce chemical passivation at the front interface of CIGS solar cells but raises the issue of its processing compatibility with the buffer layer. Therefore, an innovative Al2O3/HfO2 multistack design is proposed and investigated for the first time. Effective chemical passivation is similarly demonstrated for this novel design, suggesting potential decrease in recombination rate at the front interface in CIGS solar cells and increased efficiency. 300 °C annealing in N2 environment enable to enhance passivation effectiveness by reducing D it while surface cleaning may reveal useful for alternative CIGS processing methods.

Keywords

HfO2; Multi-stack; Thin-film photovoltaics, multistacks, Al2O3, CIGS interface passivation, thin-film photovoltaics, HfO2, CIGS interface passivation; Al2O3

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 59
    download downloads 3
  • 59
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Top 10%
Average
Top 10%
59
3
Green
hybrid