
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>To gain new insights into the transcriptional regulation of cortical development, we examined the role of the transcription factor Sp8, which is downstream of Fgf8 signaling and known to promote rostral cortical development. We have used a binary transgenic system to express Sp8 throughout the mouse telencephalon in a temporally restricted manner. Our results show that misexpression of Sp8 throughout the telencephalon, at early but not late embryonic stages, results in cortical hypoplasia, which is accompanied by increased cell death, reduced proliferation, and precocious neuronal differentiation. Misexpression of Sp8 at early developmental stages represses COUP-TF1 expression, a negative effector of Fgf signaling and a key promoter of posterior cortical identity, while ablation of Sp8 has the opposite effect. In addition, transgenic misexpression of COUP-TF1 resulted in downregulation of Sp8, indicating a reciprocal cross-regulation between these 2 transcription factors. Although Sp8 has been suggested to induce and/or maintain Fgf8 expression in the embryonic telencephalon, neither Fgf8 nor Fgf15 was upregulated using our gain-of-function approach. However, misexpression of Sp8 greatly increased the expression of Fgf target molecules, suggesting enhanced Fgf signaling. Thus, we propose that Sp8 promotes rostral and dorsomedial cortical development by repressing COUP-TF1 and promoting Fgf signaling in pallial progenitors.
Telencephalon, 570, Fibroblast Growth Factor 8, Fgf signaling, proliferation, Neurogenesis, Models, Neurological, 610, Mice, Transgenic, [SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology, Globus Pallidus, Transgenic, Mice, Neural Stem Cells, Models, Sp8, Genetics, Psychology, Animals, [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Body Patterning, Cell Proliferation, Cerebral Cortex, patterning, COUP Transcription Factor I, Cell Death, Neurosciences, Experimental Psychology, Stem Cell Research, Molecular Biology/Molecular biology, DNA-Binding Proteins, Fibroblast Growth Factors, neurogenesis, [SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Neurological, [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Cognitive Sciences, corticogenesis, Signal Transduction, Transcription Factors
Telencephalon, 570, Fibroblast Growth Factor 8, Fgf signaling, proliferation, Neurogenesis, Models, Neurological, 610, Mice, Transgenic, [SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology, Globus Pallidus, Transgenic, Mice, Neural Stem Cells, Models, Sp8, Genetics, Psychology, Animals, [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Body Patterning, Cell Proliferation, Cerebral Cortex, patterning, COUP Transcription Factor I, Cell Death, Neurosciences, Experimental Psychology, Stem Cell Research, Molecular Biology/Molecular biology, DNA-Binding Proteins, Fibroblast Growth Factors, neurogenesis, [SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Neurological, [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Cognitive Sciences, corticogenesis, Signal Transduction, Transcription Factors
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
