Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning

Authors: Simon J. Brandl; Luke Tornabene; Christopher H. R. Goatley; Jordan M. Casey; Renato A. Morais; Isabelle M. Côté; Carole C. Baldwin; +3 Authors

Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning

Abstract

Little fish make a big contributionCoral reefs represent one of the most biodiverse and rich ecosystems. Such richness conjures up images of coral heads and large colorful reef fishes. Brandlet al.show, however, that one of the most striking and important parts of the reef ecosystem is almost never seen (see the Perspective by Riginos and Leis). Small cryptobenthic fish, like blennies, make up nearly 40% of reef fish biodiversity. Furthermore, the majority of cryptobenthic fish larvae settle locally, rather than being widely dispersed, and have rapid turnover rates. Such high diversity and densities could thus provide the biomass base for larger, better-known reef fish.Science, this issue p.1189; see also p.1128

Keywords

Coral Reefs, Larva, Population Dynamics, Fishes, Animals, Biomass, 551

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    188
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
188
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!