
One of the key steps in compressed sensing is to solve the basis pursuit problem min u ∈ R n { ‖ u ‖ 1 : A u = f } \min _{u\in \mathbb {R}^n}\{\|u\|_1:Au=f\} . Bregman iteration was very successfully used to solve this problem in [40]. Also, a simple and fast iterative algorithm based on linearized Bregman iteration was proposed in [40], which is described in detail with numerical simulations in [35]. A convergence analysis of the smoothed version of this algorithm was given in [11]. The purpose of this paper is to prove that the linearized Bregman iteration proposed in [40] for the basis pursuit problem indeed converges.
Numerical mathematical programming methods, Ill-posedness and regularization problems in numerical linear algebra, 510
Numerical mathematical programming methods, Ill-posedness and regularization problems in numerical linear algebra, 510
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 118 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
