
We present a study of the low-frequency radio properties of star forming (SF) galaxies and active galactic nuclei (AGN) up to redshift $z=2.5$. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of $1542$ galaxies in $\sim 7~ \rm{deg}^2$ of the LOFAR Boötes field. Using the extensive multi-wavelength dataset available in Boötes and detailed modelling of the FIR to UV spectral energy distribution (SED), we are able to separate the star-formation (N=758) and the AGN (N=784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGN. We investigate the redshift evolution of the infrared-radio correlation (IRC) for SF galaxies and find that the ratio of total infrared to 1.4 GHz radio luminosities decreases with increasing redshift: $ q_{\rm 1.4GHz} = (2.45 \pm 0.04) \times (1+z)^{-0.15 \pm 0.03} $. Similarly, $q_{\rm 150MHz}$ shows a redshift evolution following $ q_{\rm 150GHz} = (1.72 \pm 0.04) \times (1+z)^{-0.22 \pm 0.05}$. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from $q_{\rm 1.4GHz}$ is not an accurate approximation at all redshifts.
Accepted for publication in MNRAS, 21 pages, 16 figures
[PHYS]Physics [physics], radio continuum: galaxies, FOS: Physical sciences, galaxies: starburst, 530, Astrophysics - Astrophysics of Galaxies, 520, infrared: galaxies, [PHYS] Physics [physics], galaxies: photometry, Astrophysics of Galaxies (astro-ph.GA), galaxies: nuclei, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], galaxies: evolution, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
[PHYS]Physics [physics], radio continuum: galaxies, FOS: Physical sciences, galaxies: starburst, 530, Astrophysics - Astrophysics of Galaxies, 520, infrared: galaxies, [PHYS] Physics [physics], galaxies: photometry, Astrophysics of Galaxies (astro-ph.GA), galaxies: nuclei, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], galaxies: evolution, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 123 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
