Notice
On May 12th a massive fire broke out at Marywilska 44, one of the Warsaw's largest shopping centers. This unexpected incident caused power outages in the surrounding area including the ICM data center where OpenAIRE services run. Efforts are underway to restore the power and to get services back online. Some functionalities will not work properly until then.
We apologize for any inconvenience this may have caused.
Powered by OpenAIRE graph
Found an issue? Give us feedback

UH

Universität Hamburg
Country: Germany
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
277 Projects, page 1 of 56
  • Funder: European Commission Project Code: 840670
    Overall Budget: 162,806 EURFunder Contribution: 162,806 EUR

    Our ability to learn rests on the brain’s capacity to change. People who are blind since birth have to rely more strongly on the intact sense, hearing and touch, to interact with their environment. As a consequence, blind people often show superior abilities when it comes to discriminating sounds and touch. For example, they can distinguish different voices more easily. The blind brain shows large changes due to the lack of vision: the part of the brain that responds to visual input in sighted people is now activated by the processing of sounds and touch, which is called “crossmodal plasticity”. Not only blind people, but also sighted people sometimes show crossmodal activation of the visual cortex while perceiving sounds or touch. As many environmental events are multisensory in nature, e.g. we simultaneously see and hear a person, it is thought that all related sensory representations are activated in distributed networks across the brain – even if only one sensory input is received. The proposed project investigates, using the latest advances in ultra-high field imaging, the detailed underlying mechanisms of crossmodal activation of visual brain regions during voice perception in blind and sighted humans in order to understand how the brain adapts to experience.

    more_vert
  • Funder: European Commission Project Code: 229464
    more_vert
  • Funder: European Commission Project Code: 249425
    visibility8
    visibilityviews8
    downloaddownloads11
    Powered by Usage counts
    more_vert
  • Funder: European Commission Project Code: 818941
    Overall Budget: 1,964,380 EURFunder Contribution: 1,964,380 EUR

    The recent successful applications of photon-in-photon-out spectroscopy in condense matter physics, bio-inorganic chemistry and catalysis build upon the high brilliance of modern X-ray sources and realization of dedicated emission spectrometers. However, probing with highly energetic X-ray beam puts many constraints on the sample environment and requires probing faster than the X-ray radiation damage occurs. This strongly limits the applicability of the method in studying the chemistry of colloidal nanomaterials. The objective of LINCHPIN is to investigate the emergence of electronic structure of nanomaterials in solution by hard X-ray photon-in-photon-out spectroscopy. To reach this very ambitious target, LINCHPIN consolidates an interdisciplinary engineering, spectroscopic and chemically driven effort. My group aim for developing micro-reactors, which will enable new fundamental insights related to the chemistry and electronic properties of the transition metal nitrides and sulfides. The main scientific goals are to study at the relevant time scales the kinetics and dynamics of: (a) short-lived molecular intermediate states and pre-nucleation clusters, (b) metal-sulfur and metal-nitrogen bond formation and their condensation in solution, (c) electronic structure changes during growth of nanostructures, and (d) concurrently interdependent electronic and chemical processes. The ultimate goal is to have a handle on designing and selecting, still in the reaction solution, the nanomaterials with the most promising electronic properties relevant for energy conversion and storage. Moreover, the proposed micro-reactors along with experimental spectroscopic protocols and the concurrent fundamental knowledge create a paradigm shift for in situ time-resolved experiments with an impact in many other fields ranging from catalysis, sustainable flow chemistry to biomedical applications.

    visibility16
    visibilityviews16
    downloaddownloads9
    Powered by Usage counts
    more_vert
  • Funder: European Commission Project Code: 304980
    visibility159
    visibilityviews159
    downloaddownloads218
    Powered by Usage counts
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.