
arXiv: 1305.2265
Parameter tuning is recognized today as a crucial ingredient when tackling an optimization problem. Several meta-optimization methods have been proposed to find the best parameter set for a given optimization algorithm and (set of) problem instances. When the objective of the optimization is some scalar quality of the solution given by the target algorithm, this quality is also used as the basis for the quality of parameter sets. But in the case of multi-objective optimization by aggregation, the set of solutions is given by several single-objective runs with different weights on the objectives, and it turns out that the hypervolume of the final population of each single-objective run might be a better indicator of the global performance of the aggregation method than the best fitness in its population. This paper discusses this issue on a case study in multi-objective temporal planning using the evolutionary planner DaE-YAHSP and the meta-optimizer ParamILS. The results clearly show how ParamILS makes a difference between both approaches, and demonstrate that indeed, in this context, using the hypervolume indicator as ParamILS target is the best choice. Other issues pertaining to parameter tuning in the proposed context are also discussed.
arXiv admin note: substantial text overlap with arXiv:1305.1169
Multi-objective optimization, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], FOS: Computer and information sciences, AI Planning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence
Multi-objective optimization, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], FOS: Computer and information sciences, AI Planning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
