Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2014
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Part of book or chapter of book . 2014
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Part of book or chapter of book . 2014
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5772/57244...
Part of book or chapter of book . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Statistical Characterization of Bare Soil Surface Microrelief

Authors: Vannier, Edwige; Taconet, Odile; Dusséaux, Richard; Chimi Chiadjeu, Olivier;

Statistical Characterization of Bare Soil Surface Microrelief

Abstract

Because the soil surface occurs at the boundary between the atmosphere and the pedosphere, it plays an important role for geomorphologic processes. Roughness of soil surface is a key parameter to understand soil properties and physical processes related to substrate movement, water infiltration or runoff, and soil erosion. It has been noted by many authors that most of the soil surface and water interaction processes have characteristic lengths in millimeter scales. Soil irregularities at small scale, such as aggregates, clods and interrill depressions, influence water outflow and infiltration rate. They undergo rapid changes caused by farming imple‐ ments, followed by a slow evolution due to rainfall events. Another objective of soil surface roughness study is investigating the effects of different tillage implements on soil physical properties (friability, compaction, fragmentation and water content) to obtain an optimal crop emergence. Seedbed preparation focuses on the creation of fine aggregates and the size distribution of aggregates and clods produced by tillage operations is frequently measured. Active microwave remote sensing allows potential monitoring of soil surface roughness or moisture retrieving at field scale using space-based Synthetic Aperture Radars (SAR) with high spatial resolution (metric or decametric). The scattering of microwaves depends on several surface characteristics as well as on imagery configuration. The SAR signal is very sensitive to soil surface irregularities and structures (clod arrangement, furrows) and moisture content in the first few centimeters of soil (depending on the radar wavelength). In order to link the remote sensing observations to scattering physical models as well as for modelling purpose, key features of the soil microtopography should be characterized. However, this characteri‐ zation is not fully understood and some dispersion of roughness parameters can be observed in the same field according to the methodology used. It seems also, that when describing surface roughness as a whole, some information related to structured elements of the micro‐ topography is lost.

Country
France
Keywords

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], [SDE.MCG] Environmental Sciences/Global Changes, 550, [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph], [PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph], [SDE.MCG]Environmental Sciences/Global Changes, [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph], [SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph], [PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid