
Since the least squares estimation is not appropriate when multicollinearity exists among the regressors of the linear regression model, the principal components regression is used to deal with the multicollinearity problem. This article suggests a new procedure for the selection of suitable principal components. The procedure is based on the condition index instead of the eigenvalue. The principal components corresponding to the indices are removed from the model if any condition indices are larger than the upper limit of the cutoff value. On the other hand, the corresponding principal components are included if any condition indices are smaller than the lower limit. The forward inclusion method is employed to select proper principal components if any condition indices are between the upper limit and the lower limit. The limits are obtained from the linear model which is constructed on the basis of the conjoint analysis. The procedure is evaluated by Monte Carlo simulation in terms of the mean square error of estimator. The simulation results indicate that the proposed procedure is superior to the existing methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
