Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL - Université de ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL - Université de Lille
Conference object . 2020
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL - Université de Lille
Conference object . 2021
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL - Université de Lille
Conference object . 2021
https://doi.org/10.5194/egusph...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theoretical core spectroscopy of molecules interacting with ice surfaces 

Authors: Opoku, Richard; Toubin, Céline; Severo Pereira Gomes, André;

Theoretical core spectroscopy of molecules interacting with ice surfaces 

Abstract

<p><strong>Céline TOUBIN</strong><strong><sup>2</sup></strong><strong> and </strong><strong>André Severo Pereira GOMES</strong><strong><sup> 3</sup></strong></p><p><sup>2,3</sup> Laboratoire de Physique des Lasers, des atomes et des Molécules, Université de Lille, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France</p><p>E-mail : celine.toubin@univ-lille.fr<sup>2</sup> ; andre.gomes@univ-lille.fr<sup>3</sup></p><p>Ice plays an essential role as a catalyst for reactions between atmospheric trace gases. The uptake of trace gases to ice has been proposed to have a major impact on geochemical cycles, human health, and ozone depletion in the stratosphere [1]. X-ray photoelectron spectroscopy (XPS) [2], serves as a powerful technique to characterize the elemental composition of such interacting species due to its surface sensitivity. Given the existence of complex physico-chemical processes such as adsorption, desorption, and migration within ice matrix, it is important to establish a theoretical framework to determine the electronic properties of these species under different conditions such as temperature and concentration. The focus of this work is to construct an embedding methodology employing Density Functional (DFT) and Wave Function Theory (WFT) to model and interpret photoelectron spectra of adsorbed halogenated species on ice surfaces at the core level with the highest accuracy possible. </p><p>We make use of an embedding approach utilizing full quantum mechanics to divide the system into subunits that will be treated at different levels of theory [3].</p><p>The goal is to determine core electron binding energies and the associated chemical shifts for the adsorbed halogenated species such as molecular HCl and the dissociated form Cl- at the surface and within the uppermost bulk layer of the ice respectively [4]. The core energy shifts are compared to the data derived from the XPS spectra [4].</p><p>We show that the use of a fully quantum mechanical embedding method, to treat solute-solvent systems is computationally efficient, yet accurate enough to determine the electronic properties of the solute system (halide ion) as well as the long-range effects of the solvent environment (ice).</p><p>We acknowledge support by the French government through the Program “Investissement d'avenir” through the Labex CaPPA (contract ANR-11-LABX-0005-01) and I-SITE ULNE project OVERSEE (contract ANR-16-IDEX-0004), CPER CLIMIBIO (European Regional Development Fund, Hauts de France council, French Ministry of Higher Education and Research) and French national supercomputing facilities (grants DARI x2016081859 and A0050801859).</p><p> </p>

Keywords

[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry, [CHIM] Chemical Sciences, [PHYS] Physics [physics], [PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!