Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Ecology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Ecology and Evolution
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Ecology and Evolution
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Spatial Pattern Analysis Reveals Randomness Among Carnivore Depredation of Livestock

Authors: Claire F. Hoffmann; Bernard M. Kissui; Robert A. Montgomery;

Spatial Pattern Analysis Reveals Randomness Among Carnivore Depredation of Livestock

Abstract

Carnivore depredation of livestock is a global problem which negatively impacts both agropastoral livelihoods and carnivore population viability. Given the gravity of this issue, research has increasingly focused on applied techniques capable of quantifying the factors that increase the risk of livestock depredation. One such technique is risk modeling. This multivariate approach is designed to produce predictions of the spatial configuration of depredation so as to prioritize interventionist activities. Thus, the efficacy of subsequent interventions is, in part, dependent upon the accuracy of the predictions deriving from the risk models. The predictability of spatial patterns in carnivore depredation of livestock is influenced by the degree of spatial autocorrelation evident in the data distributions. We conducted a multi-year assessment to quantify the degree of spatial autocorrelation within livestock depredation data. We centered our study in the Maasai steppe of Tanzania, which experiences some of the highest rates of human-carnivore conflict in the world. We applied three geostatistical measures to assess spatial clustering in data describing livestock depredation by lions (Panthera leo), leopards (Panthera pardus), spotted hyenas (Crocuta crocuta), black-backed jackals (Canis mesomelas), and cheetahs (Acinonyx jubatus) at the household (i.e., livestock enclosure) scale. Using an ordinal spatial scan statistic, a Bernoulli spatial scan statistic, and the Getis-Ord local spatial statistic, we found that the spatial patterns in carnivore depredation of livestock tended not to significantly differ from random. As the predictive ability of spatial risk models may be limited where spatial patterns of carnivore depredation of livestock do not statistically differ from random, explicitly assessing such patterns is an important component of conflict mitigation efforts. We discuss the inferences of this analysis for the optimization of interventionist activities intending to develop sustainable solutions for human-carnivore conflict.

Keywords

Ecology, Evolution, human-carnivore conflict, QH359-425, risk modeling, spatial autocorrelation, livestock depredation, conflict intervention, QH540-549.5

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
gold