Powered by OpenAIRE graph
Found an issue? Give us feedback


University of Cyprus
330 Projects, page 1 of 66
  • Funder: European Commission Project Code: 268402
  • Funder: European Commission Project Code: 867452
    Overall Budget: 145,941 EURFunder Contribution: 145,941 EUR

    The proposal aims to produce novel light emitters by merging two promising semiconductor families, III-Nitrides and lead halide perovskite nanocrystals (LHP NCs) into novel nanostructured architectures. III-Nitrides are established emitters with widespread use in the lighting industry and high-density optical disks and with great promises for power electronic applications. On the other hand, the field of LHP NC photonics is at its infancy but breakthroughs have already been accomplished with demonstrations of optically-pumped lasers and light emitting diodes (LEDs). Research on the two material families has thus far proceeded independently. Yet new architectures with improved performance and functionality may emerge from their integration into hybrid devices that can exploit the favourable properties of each, namely the superior electrical properties and established technology of the nitrides with the ease of solution-processability, visible spectral tunability and high emission quantum yields (QY) of the LHP NCs. The proposed project will be investigating the potential flow of energy from the donor material (III-nitrides) to the acceptor (LHP NC), via radiative pumping but also via efficient non-radiative Förster energy transfer (FRET,) under optical and electrical excitation. Additionally is aiming to demonstrate hybrid electrically excited nanostructure devices, allowing the two materials to exist with nanoscale proximity. Moreover, the project is targeting to the fabrication of electrical-excited of a hybrid microcavity-based heterostructures, via an elaborate design of two back to back microcavities. The outcome of this project is expected to particularly benefit the scientific semiconductor area and industry fro the development of efficient high colour rendering index (CRI) LEDs for solid state lighting and display applications.The methodology for a demonstration of novel light emitters is highlighted in work packages (WPs) 3 to 5.

    Powered by Usage counts
  • Funder: European Commission Project Code: 101076425
    Overall Budget: 1,500,000 EURFunder Contribution: 1,500,000 EUR

    Inefficient drug delivery to tumors can reduce dramatically treatment efficacy and thus, affect negatively the life of cancer patients. This is particularly evident in desmoplastic cancers where interactions among cancer cells, stromal cells and the fibrotic matrix cause tumor stiffening and accumulation of mechanical forces that compress tumor blood vessels. Indeed, in subsets of pancreatic cancers and sarcomas, 95% of intratumoral blood vessels may be compressed and up to 80% totally collapsed leading to reduced blood flow (hypo-perfusion) and drug delivery. Hypo-perfusion also leads to hypoxia that helps cancer cells evade the immune system and increase their invasive and metastatic potential. Use of mechanotherapeutics and ultrasound sonopermeation are two mechano-modulation strategies that separately have been employed to treat vascular abnormalities in tumors. Even though these strategies have reached the clinic, their promise has yet to be realized by cancer patients owning to limitations of the methods. My hypothesis is that these strategies can uniquely complement each other and have not only additive, but highly multiplicative synergistic effects on modulating the desmoplastic tumor microenvironment and improving the efficacy of the promising but still of limited use nano-immunotherapy. However, it is crucial that specific guidelines should be developed. To achieve this ground-breaking goal, I will employ a mixture of cutting-edge computational and experimental techniques. I will perform in vivo mice studies in pancreatic cancers and sarcomas to investigate under what conditions these mechano-modulation strategies can be optimally combined to improve treatment efficacy, prevent metastasis and increase survival. In parallel, I will develop new mathematical models to provide useful guidelines for optimizing the experimental protocol. MMSCancer will introduce novel therapeutic strategies for the treatment of drug resistant tumors leading to better therapies.

  • Funder: European Commission Project Code: 624345
  • Funder: European Commission Project Code: 891101
    Overall Budget: 157,941 EURFunder Contribution: 157,941 EUR

    The penetration of renewable sources of energy in power networks is expected to grow over the next years, motivated by environmental concerns. However, renewable generation is in general intermittent and a large penetration may cause frequent generation-demand imbalances that may compromise power quality and even result in blackouts. Demand side participation can offer a solution to this problem, due to loads ability to provide a fast response when required. However, a large portion of the total demand corresponds to thermostatic loads (TLs), which are characterized by a cyclic thermostatic behavior. Such effects need to be taken into account in the design of control schemes for TLs, if those are to provide support to the power grid. The primary technical research objective of this project is the design of control schemes for TLs such those provide effective, efficient and reliable ancillary support to the power network. In particular, the major research objectives of the project are to: (a) Enable TLs to provide ancillary support to existing frequency control mechanisms, ensuring that those switch when there is an urgency. (b) Obtain an optimal power allocation between TLs with minimum user disruption. (c) Provide analytic stability guarantees for power networks when the proposed TL control designs are implemented. (d) Enable further research on TLs, by providing analytic models that characterize their aggregate behavior. (e) Validate the proposed control designs with realistic numerical and hardware in the loop simulations. The main career objectives are to: (a) Strengthen the research skills of the fellow with training on advanced simulation tools, power systems analysis and control theory. (b) Enable the transfer of knowledge between the fellow, the scientific community and the industry. (c) Enrich the transferable skills of the researcher with training on presenting to wide audiences, writing research grant proposals and managing intellectual property.

    Powered by Usage counts

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.