Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Growth Curve Models of Repeated Binary Response

Authors: E J, Stanek; S R, Diehl;

Growth Curve Models of Repeated Binary Response

Abstract

Experimental designs that include repeated measures of binary response variables over time and under different conditions are common in biology. In such settings, it is often desirable to characterize the response pattern over time. When response variables are continuous, this characterization can be made in terms of a growth model such as the Potthoff-Roy growth curve model. We illustrate how a similar growth curve modeling strategy can be implemented using weighted least squares (WLS) methods for binary response data. The growth models are constructed in terms of polynomial functions across marginal response. However, when growth models are fit to repeated binary response, the nonsignificant higher-order polynomial functions are dropped from the model, rather than used as covariates. Dropping the nonsignificant polynomials from the model will reduce the number of response functions, and help avoid small-sample problems that can occur when the number of correlated response functions is large and sample sizes are small. The reduced set of response functions are then modeled using WLS methods. We illustrate such models with an example of binary fly oviposition response (accept or reject) exhibited by two populations of flies at four ages to two types of fruit.

Keywords

Biometry, Models, Statistical, Diptera, Oviposition, Models, Biological, Fruit, Animals, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!