
In this paper we generalize the notion of exact functor to an arbitrary category and show that every small category has a full embedding into a category of all set-valued functors on some small category. The notion of exact is such that this result generalizes the author’s exact embedding of regular categories and, indeed, Mitchell’s embedding of abelian categories. An example is given of the type of diagram-chasing argument that can be given with this embedding.
General theory of categories and functors, Embedding theorems, universal categories
General theory of categories and functors, Embedding theorems, universal categories
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
