
doi: 10.2298/fil1911269c
Graphs whose spectrum belongs to the interval [-2,2] are called Smith graphs. The structure of a Smith graph with a given spectrum depends on a system of Diophantine linear algebraic equations. We have established in [1] several properties of this system and showed how it can be simplified and effectively applied. In this way a spectral theory of Smith graphs has been outlined. In the present paper we introduce cospectrality graphs for Smith graphs and study their properties through examples and theoretical consideration. The new notion is used in proving theorems on cospectrality of Smith graphs. In this way one can avoid the use of the mentioned system of Diophantine linear algebraic equations.
spectral radius, Graphs and linear algebra (matrices, eigenvalues, etc.), cospectrality graphs, Diophantine equations, spectral graph theory, Smith graphs
spectral radius, Graphs and linear algebra (matrices, eigenvalues, etc.), cospectrality graphs, Diophantine equations, spectral graph theory, Smith graphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
