<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Hausdorff distance between two sets of curves is a measure for the similarity of these objects and therefore an interesting feature in shape recognition. If the curves are algebraic computing the Hausdorff distance involves computing the intersection points of the Voronoi edges of the one set with the curves in the other. Since computing the Voronoi diagram of curves is quite difficult we characterize those points algebraically and compute them using the computer algebra system SYNAPS. This paper describes in detail which points have to be considered, by what algebraic equations they are characterized, and how they actually are computed.
Hausdorff distance, Shape comparison, Parametric curves
Hausdorff distance, Shape comparison, Parametric curves
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |