
We consider the statistical distribution of zeros of random meromorphic functions whose poles are independent random variables. It is demonstrated that correlation functions of these zeros can be computed analytically and explicit calculations are performed for the 2-point correlation function. This problem naturally appears in e.g. rank-one perturbation of an integrable Hamiltonian and, in particular, when a $��$-function potential is added to an integrable billiard.
32 pages, 4 figures, submitted to Phys. Rev. E, 2000
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
