Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Queensland Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Extinction behaviour for two–dimensional inward-solidification problems

Extinction behaviour for two-dimensional inward-solidification problems.
Authors: McCue, Scott W.; King, John R.; Riley, David S.;

Extinction behaviour for two–dimensional inward-solidification problems

Abstract

Summary: The problem of the inward solidification of a two-dimensional region of fluid is considered, it being assumed that the liquid is initially at its fusion temperature and that heat flows by conduction only. The resulting one-phase Stefan problem is reformulated using the Baiocchi transform and is examined using matched asymptotic expansions under the assumption that the Stefan number is large. Analysis on the first time-scale reveals that the liquid-solid free boundary becomes elliptic in shape at times just before complete freezing. However, as with the radially symmetric case considered previously, this analysis leads to an unphysical singularity in the final temperature distribution. A second time-scale therefore needs to be considered, and it is shown that the free boundary retains its shape until another non-uniformity is formed. Finally, a third (exponentially short) time-scale, which also describes the generic extinction behaviour for all Stefan numbers, is needed to resolve the non-uniformity. By matching between the last two time-scales we are able to determine a uniformly valid description of the temperature field and the location of the free boundary at times just before extinction. Recipes for computing the time it takes to completely freeze the body and the location at which the final freezing occurs are also derived.

Country
Australia
Keywords

inward solidification, large Stefan number, Two, dimensional Stefan problem, extinction behaviour, 621, Mathematical Sciences, Stefan problems, phase changes, etc., Engineering, Initial-boundary value problems for second-order parabolic equations, Physical Sciences, Free boundary problems for PDEs, Baiocchi transform, asymptotic solution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Average
Green
bronze