
arXiv: 1601.05090
We study the ionization structure of galactic outflows in 37 nearby, star forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modeled as a co-moving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photo-ionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photo-ionization models constrain the ionization parameter (U) between -2.25 < log(U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z$_\odot$. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total Hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
30 pages, 17 tables, 14 figures. Accepted for publication in MNRAS
FOS: Physical sciences, [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph], ultraviolet: ISM, Astrophysics - Astrophysics of Galaxies, [SDU] Sciences of the Universe [physics], ISM: jets and outflows, Astrophysics of Galaxies (astro-ph.GA), galaxies: formation, galaxies: evolution
FOS: Physical sciences, [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph], ultraviolet: ISM, Astrophysics - Astrophysics of Galaxies, [SDU] Sciences of the Universe [physics], ISM: jets and outflows, Astrophysics of Galaxies (astro-ph.GA), galaxies: formation, galaxies: evolution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
