Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Stochastic Analysis ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Stochastic Analysis and Applications
Article . 2016 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

Authors: Bayer, Christian; Moraes, Alvaro; Tempone, Raúl; Vilanova, Pedro;

An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

Abstract

In this work, we present an extension to the context of Stochastic Reaction Networks (SRNs) of the forward-reverse representation introduced in "Simulation of forward-reverse stochastic representations for conditional diffusions", a 2014 paper by Bayer and Schoenmakers. We apply this stochastic representation in the computation of efficient approximations of expected values of functionals of SNR bridges, i.e., SRNs conditioned to its values in the extremes of given time-intervals. We then employ this SNR bridge-generation technique to the statistical inference problem of approximating the reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate Ordinary Differential Equations (ODEs) approximation; then, during phase II, we apply the Monte Carlo version of the Expectation-Maximization (EM) algorithm starting from the phase I output. By selecting a set of over dispersed seeds as initial points for phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are illustrated by numerical examples.

35 pages, 13 figures

Keywords

ddc:510, 65C05, Monte Carlo expectation-maximization algorithm, bridges for continuous-time Markov chains, article, Numerical Analysis (math.NA), 510, 60J27, 62M05, 92C60, Forward–reverse algorithm -- Monte Carlo expectation-maximization algorithm -- inference for stochastic reaction networks -- bridges for continuous-time Markov chains, 65C60, inference for stochastic reaction networks, 92C42, FOS: Mathematics, 60J27, 60J22, 60J75, 62M05, 65C05, 65C60, 92C42, 92C60, 60J22, Mathematics - Numerical Analysis, 60J75, Forward–reverse algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
bronze