Powered by OpenAIRE graph
Found an issue? Give us feedback

KAUST

King Abdullah University of Science and Technology
6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 644960
    Overall Budget: 4,412,180 EURFunder Contribution: 3,342,270 EUR

    The focus of the project is to enable added-value services to be provided thanks to SDN, on top of Internet Exchange Points and other network interconnnection fabrics. The services would relate not only to the flexibility of the interconnection fabric, but most importantly to enable the content and data centre ecosystem that is present at the interconnection fabric to collaborate. The ultimate goal is to create a service marketplace on top of the ecosystem composed of Cloud/data centers, networked applications, and the interconnection fabric.

    more_vert
  • Funder: European Commission Project Code: 101007084
    Overall Budget: 4,765,770 EURFunder Contribution: 3,779,240 EUR

    Transparent photovoltaics (TPV) possesses a huge untapped potential in the harvesting of solar energy where it readily can be embedded in buildings applications worldwide to significant reduce CO2 emissions, and support the needed development of nearly zero-energy buildings. TPV will increase the utilization of renewable energy directly where it is needed, and play a crucial role for the sustainable transformation of the energy sector in large cities. Using conventional photovoltaics, however, it is not possible to fabricate TPV elements without severe losses in efficiency and/or visual light transmittance. In the CITYSOLAR project, a new breakthrough concept for TPV will be developed by exploiting the combined use of emerging technologies, namely multi-junction solar modules developed from near-ultraviolet perovskite and near-infrared organic solar cells. Using advanced concepts within light management such as photonic crystals, nanophotonics and photon recycling and advanced module integration schemes, CITYSOLAR will radically change performance limits for TPV by significantly reducing losses related to light absorption and scale-up from individual solar cells to multi-junction modules. CITYSOLAR brings together world-leading European academic and industrial players, some with key intellectual property, together with two non-EU partners belonging to Mission Innovation countries specialized in the synthesis of advanced materials for hybrid and organic solar cells. The consortium will develop highly efficient and transparent solar cells and modules to increase the performance of available TPV technologies by 50%, and via innovative integration schemes present a route for its use in building integrated PV (BIPV) applications. This represents a strategic sector for Europe and an opportunity to accelerate and reduce the cost of the next generation of sustainable renewable energy technologies.

    more_vert
  • Funder: European Commission Project Code: 837733
    Overall Budget: 4,752,390 EURFunder Contribution: 3,997,160 EUR

    What if we were able to use CO2 and H2 from renewable energy sources as fuel and chemical feedstocks, and thus decrease CO2 emissions and displace fossil fuels at the same time? COZMOS will develop an energy-efficient and environmentally and economically viable conversion of CO2 to fuels and high added value chemicals via an innovative, cost effective catalyst, reactor and process. The concept will combine the sequential reactions of CO2 hydrogenation to methanol and methanol to C3 hydrocarbons, exploiting Le Chatelier's principle to overcome low equilibrium product yields of methanol. Complete conversion of CO2 to a 85 % yield of C3 hydrocarbons will be achieved by using an optimised bifunctional catalyst within a single reactor. The optimised catalyst will allow the combined reactions, that currently run at disparate temperatures and pressures, to operate in a temperature/pressure "sweet spot", which will reduce infrastructure and provide energy and production cost savings. The concept will allow tunable production of propane, an easily stored fuel used for heating, cooking and transportation, and the more valuable product propene, a base chemical primarily polymerised to lightweight plastics, depending on location, amount of available renewable energy and economic needs. The integrated technology will be demonstrated at TRL5 on off-gases from the energy intensive steel and refinery industries. Markets for both propane and propene are expected to grow in the coming years, such that the COZMOS technology will contribute to achieving a Circular Economy and diversified economic base in carbon-intensive regions. Throughout the whole value chain development, emphasis will be placed on risk-mitigation pathways and strong industrial involvement, LCA and techno-economic analysis to maximise further exploitation and industrialisation of the results. Specific attention will be paid to social acceptance, including analysis of stakeholder and end-user interests.

    more_vert
  • Funder: European Commission Project Code: 244401
    more_vert
  • Funder: European Commission Project Code: 817806
    Overall Budget: 6,623,810 EURFunder Contribution: 6,481,310 EUR

    The mesopelagic layer is one of the least understood ecosystems on Earth. Recent research suggests that the fish biomass in the mesopelagic ecosystem might be 10 times higher than previously thought, and therefore represent 90 % of the fish biomass of the planet. However, this estimate is subject to a high degree of uncertainty in the fraction of the community that is fish. The potential high biomass has raised interest in its exploitation, mainly as a fish meal, but other potential exploitation pathways for high value compounds, such as nutraceuticals and pharmaceuticals, are possible. Nevertheless, if the biomass is as high as estimated, mesopelagic fish may play a key role in ecosystem services, such as sustaining other commercially relevant species and carbon sequestration. SUMMER will establish a protocol to accurately estimate mesopelagic fish biomass, quantify the ecosystem services provided by the mesopelagic community (food, climate regulation and potential for bioactive compounds) and develop a decision support tool to measure the trade-offs between the different services. Combining eDNA with in situ acoustics and trawls SUMMER will obtain an accurate assessment of the composition and biomass of the mesopelagic community. Gut content analysis, molecular markers and stable isotopes will allow quantification of the vertically integrated trophic network, linking to commercial and charismatic species. Models will be used to estimate the impact of fishing scenarios on trophic network stability and carbon sequestration. Mesopelagic organisms will be tested for their potential as fish meal, nutra and pharmaceuticals. The project will develop a decision support tool to enable accounting for trade-offs between services in when considering sustainable use of mesopelagic resources. Finally, a range of interactions with stakeholders, policy makers and public will ensure that any strategy to exploit the mesopelagic ecosystem takes account of all the consequences.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.