Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Linear and Multiline...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Linear and Multilinear Algebra
Article . 2013 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The E-eigenvectors of tensors

Authors: Liqun Qi; Shenglong Hu;

The E-eigenvectors of tensors

Abstract

We first show that the eigenvector of a tensor is well-defined. The differences between the eigenvectors of a tensor and its E-eigenvectors are the eigenvectors on the nonsingular projective variety $\mathbb S=\{\mathbf x\in\mathbb P^n\;|\;\sum\limits_{i=0}^nx_i^2=0\}$. We show that a generic tensor has no eigenvectors on $\mathbb S$. Actually, we show that a generic tensor has no eigenvectors on a proper nonsingular projective variety in $\mathbb P^n$. By these facts, we show that the coefficients of the E-characteristic polynomial are algebraically dependent. Actually, a certain power of the determinant of the tensor can be expressed through the coefficients besides the constant term. Hence, a nonsingular tensor always has an E-eigenvector. When a tensor $\mathcal T$ is nonsingular and symmetric, its E-eigenvectors are exactly the singular points of a class of hypersurfaces defined by $\mathcal T$ and a parameter. We give explicit factorization of the discriminant of this class of hypersurfaces, which completes Cartwright and Strumfels' formula. We show that the factorization contains the determinant and the E-characteristic polynomial of the tensor $\mathcal T$ as irreducible factors.

17 pages

Related Organizations
Keywords

Mathematics - Spectral Theory, FOS: Mathematics, Spectral Theory (math.SP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
bronze