
An overlooked formula of E. Lucas for the generalized Bernoulli numbers is proved using generating functions. This is then used to provide a new proof and a new form of a sum involving classical Bernoulli numbers studied by K. Dilcher. The value of this sum is then given in terms of the Meixner-Pollaczek polynomials.
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
