
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10016/34498
Semiparametric panel data modelling and statistical inference with fractional stochastic trends, nonparametrically time-trending individual effects, and general cross-sectional correlation and heteroscedasticity in innovations are developed. The fractional stochastic trends allow for a wide range of nonstationarity, indexed by a memory parameter, nesting the familiar case and allowing for parametric short-memory. The individual effects can nonparametrically vary simultaneously across time and across units. The cross-sectional covariance matrix is also nonparametric. The main focus is on estimation of the time series parameters. Two methods are considered, both of which entail an only approximate differencing out of the individual effects, leaving an error which has to be taken account of in our theory. In both cases we obtain standard asymptotics, with a central limit theorem, over a wide range of possible parameter values, unlike the nonstandard asymptotics for autoregressive parameter estimates at a unit root. For statistical inference, consistent estimation of the limiting covariance matrix of the parameter estimates requires consistent estimation of a functional of the cross-sectional covariance matrix. We examine efficiency loss due to cross-sectional correlation in a spatial model example. A Monte Carlo study of finite-sample performance is included. We are grateful for the comments of two referees. Financial support from the Ministerio de Economía y Competitividad (Spain), grants ECO2012-31748, ECO2014-57007p and MDM 2014-0431, and Comunidad de Madrid, MadEco-CM (S2015/HUM-3444) is gratefully acknowledged by the second author.
Parametric fractional dependence, Nonparametric cross-sectional correlation and heteroscedasticitySpatial model, Nonparametric cross-sectional correlation and heteroscedasticity, Semiparametric panel data modelling, Economía, Spatial model, Asymptotic normality, C13, Nonparametrically time-trending individual effects, Consistency, C12, C23
Parametric fractional dependence, Nonparametric cross-sectional correlation and heteroscedasticitySpatial model, Nonparametric cross-sectional correlation and heteroscedasticity, Semiparametric panel data modelling, Economía, Spatial model, Asymptotic normality, C13, Nonparametrically time-trending individual effects, Consistency, C12, C23
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 9 | |
downloads | 13 |