
pmid: 28242478
Multicellular organisms rely on the activity of organs that develop to a specific size and shape and are patterned into particular tissues. One of the most complicated plant structures is the female reproductive organ, the gynoecium, which must integrate a range of developmental cues to ensure efficient reproduction. Here we review recent discoveries on gene networks and hormonal activities that are required to (1) control cell division, (2) pattern the gynoecium along polarity axes and (3) specify organ shape and seed dispersal. Comparisons are made to other plant organs to understand how a developmental programme, which is evolutionarily derived from the formation of leaves, has been recruited and modified to create a reproductive machinery that has allowed angiosperms to dominate the world.
Flowers, Gene Expression Regulation, Plant, Fruit, Plant Cells, Seed Dispersal, Genetics, Anisotropy, Germ Cells, Plant, Developmental Biology
Flowers, Gene Expression Regulation, Plant, Fruit, Plant Cells, Seed Dispersal, Genetics, Anisotropy, Germ Cells, Plant, Developmental Biology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
