
Gromov hyperbolicity grasps the essence of both negatively curved spaces and discrete spaces. The hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it; hence, characterizing hyperbolic graphs is a main problem in the theory of hyperbolicity. Since this is a very ambitious goal, a more achievable problem is to characterize hyperbolic graphs in particular classes of graphs. The main result in this paper is a characterization of the hyperbolicity of periodic graphs.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
