
AbstractA generator program for a computable function (by definition) generates an infinite sequence of programs all but finitely many of which compute that function. Machine learning of generator programs for computable functions is studied. To motivate these studies partially, it is shown that, in some cases, interesting global properties for computable functions can be proved from suitable generator programs which cannot be proved from any ordinary programs for them. The power (for variants of various learning criteria from the literature) of learning generator programs is compared with the power of learning ordinary programs. The learning power in these cases is also compared to that of learning limiting programs, i.e., programs allowed finitely many mind changes about their correct outputs.
recursive functions, Learning and adaptive systems in artificial intelligence, Models of computation (Turing machines, etc.), learning machine, computable functions, Applications of computability and recursion theory, learning power, higher- order programs, identification, generator programs, limiting programs
recursive functions, Learning and adaptive systems in artificial intelligence, Models of computation (Turing machines, etc.), learning machine, computable functions, Applications of computability and recursion theory, learning power, higher- order programs, identification, generator programs, limiting programs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
