Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL INRAEarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Part of book or chapter of book . 2008
Data sources: HAL INRAE
https://doi.org/10.1007/978-0-...
Part of book or chapter of book . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetics of Lactic Acid Bacteria

Authors: Zagorec, Monique; Anba-Mondoloni, Jamila; Crutz-Le Coq, Anne-Marie; Champomier-Verges, Marie-Christine;

Genetics of Lactic Acid Bacteria

Abstract

Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein). The LAB species that are naturally present in those products and become dominant in the final processing steps essentially belong to Lactobacillus sakei, Lactobacillus curvatus, and Lactobacillus plantarum. These are also the three main species that are sold as starters for the fermentation of dry sausages, essentially in Europe, to which should be added the two other pediococci species Pediococcus pentosaceus and Pediococcus acidilactici (Hammes & Hertel, 1998). Since the last 20 years, many microbiologists have investigated the physiology of these LAB, in order to understand the mechanisms by which they contribute to the quality of the final product, and to improve their use. Molecular tools were therefore developed, leading to an increase of the knowledge about their genetics. More recently, the genomes of L. plantarum WCFS1 (Kleerebezem, et al, 2003), L. sakei 23K (Chaillou, et al., 2005), and P. pentosaceus ATCC25745 (Makarova, et al., 2006) were entirely sequenced, giving a general overview on the whole genetic repertoire of those bacteria. However, the description and analysis of all

Keywords

[SDV] Life Sciences [q-bio], lactic acid bacterium, [SDV]Life Sciences [q-bio], environmental microbiology, none none, lactobacillus plantarum, 630, glycine betaine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
INRAE
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!