Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL Descartesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Conference object . 2005
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-INSU
Conference object . 2005
Data sources: HAL-INSU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Sorbonne Université
Conference object . 2005
https://doi.org/10.1007/1-4020...
Part of book or chapter of book . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coronal Mass Ejections and Magnetic Helicity

Authors: van Driel-Gesztelyi, Lidia;

Coronal Mass Ejections and Magnetic Helicity

Abstract

Coronal mass ejections (CMEs) are the most energetic events in the solar system, expelling up to 1016 g of coronal material at speeds of several hundreds or thousands of km s−1 from the Sun. As CMEs are the primary cause of space weather disturbances, we need to understand their underlying cause(s) in order to be able to predict them. After an overview of their basic properties based on multi-wavelength and multi-instrument data, including optical, EUV, X-ray and radio observations from microwaves to kilometric wavelengths, we follow CMEs from the low solar atmosphere through the interplanetary medium to the Earth. A discussion on CME source regions is presented, followed by a discussion on theoretical CME models, comparing them to observations. Evidence is emerging that magnetic helicity is the key to understand CMEs: they go off when too much helicity has built up in the corona. Therefore, in the second part an overview of this young and dynamic field of solar physics is presented. During the last four years, attempts were made to estimate/measure magnetic helicity from solar and interplanetary observations. As magnetic helicity (unlike current helicity) is one of the few global quantities that is conserved even in resistive MHD on a timescale less than the global di usion timescale, magnetic helicity studies make it possible to trace helicity as it emerges from the sub-photospheric layers into the corona, then being ejected via CMEs into the interplanetary space, and reaching the Earth in a magnetic cloud. Observational studies on the relative importance of di erent sources of magnetic helicity investigate whether the dominant helicity source is photospheric plasma motions (photospheric di erential rotation and localized shearing motions) or the twist of the emerging flux tubes created under the photosphere (presumably by the radial shear in the di erential rotation in the tachocline).

Country
France
Keywords

[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!