Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Different...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Differential Equations
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Differential Equations
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Differential Equations
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

Commutation Methods for Jacobi Operators

Commutation methods for Jacobi operators
Authors: Gesztesy, F; Teschl, G;

Commutation Methods for Jacobi Operators

Abstract

The authors observe that a complete spectral characterization of both the single and double commutation methods in the difference operator context is lacking in the literature and there seem to be no treatment of general backgrounds. In the present paper, the authors attempt to fill these gaps and provide a complete spectral characterization of the single commutation method and develop the corresponding results for the double commutation method. The paper starts with an informal discussion of commutation methods. It is followed by a detailed investigation of the single commutation method and its iteration. Next, it provides a complete characterization of the double commutation method for Jacobi operators. The authors prove unitary equivalence of commuted operators, restricted to the orthogonal complement of the eigenspace corresponding to the newly inserted eigenvalues, with original background operators. Further the connection between the Weyl-Titchmarsh theory and the double commutation method is discussed. Finally, the authors demonstrate how to iterate the double commutation method and give explicit formulas for various quantities (such as eigenfunctions and spectra) of the iterated operators in terms of the background quantities and scattering matrix. As applications, the paper includes an explicit realization of the isospectral torus for algebra-geometric finite-gap Jacobi operators and the N-soliton solution of the Toda and Kac-van Moerbeke lattice equations with respect to arbitrary background solutions. The paper is supplemented with appendices giving the formulas for Jacobi operators and some results about Weyl-Titchmarsh theory for Jacobi operators which are quoted in the text.

Country
Austria
Keywords

GEOMETRY, Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.), 101002 Analysis, COMPARISON-THEOREMS, KORTEWEG-DEVRIES EQUATION, INVERSE SCATTERING, Weyl theory and its generalizations for ordinary differential equations, Weyl-Titchmarsh theory, Jacobi operators, complete spectral characterization, single and double commutation methods, TODA, Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics, Kac-van Moerbeke lattice equations, Analysis, DIFFERENCE EQUATIONS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Average
hybrid