Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Recent Engineering Science
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-Binary Parallel Turbo LDPC Codes Associated with High Order Constellation

English
Authors: Mostari, Latifa; Taleb-Ahmed, Abdelmalik; Bounoua, Abdennacer;

Non-Binary Parallel Turbo LDPC Codes Associated with High Order Constellation

Abstract

Since the non-binary LDPC (Low-Density Parity-Check) codes offer better performance than binary LDPC codes for a system using high order constellations such as the QAM (Quadrature Amplitude Modulation), one proposes in this paper a high non-binary LDPC code, called a parallel nonbinary turbo LDPC code. It is obtained by a parallel concatenation of two identical regular non-binary LDPC codes, separated by an interleaver introducing the diversity through the turbo-code structure proposed by Berrou and others. Regular codes were used to avoid the complexity of irregular codes despite that they have better performance than the regular code. In our simulation, we evaluate overRayleigh and Gaussian channels, the performance of the proposed code combined with a 16-QAMusing Gray mapping. We show that the parallel non-binary turbo LDPC code outperforms a single non-binary LDPC code, with the same code length and code rate. Also, we note that its performance can be improved with the increase of two numbers of iterations: global iterations and iterations of non-binary LDPC codes.

Country
France
Keywords

"turbo-code", [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], [SPI] Engineering Sciences [physics], "parallel concatenation", "Low-Density Parity-Check codes", "non-binary", "iterative decoding", [INFO] Computer Science [cs], [SPI.TRON] Engineering Sciences [physics]/Electronics, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold