Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Software & Systems Modeling
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2021
Data sources: HAL-CEA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A generic LSTM neural network architecture to infer heterogeneous model transformations

Authors: Burgueño, Loli; Cabot, Jordi; Li, Shuai; Gérard, Sébastien;

A generic LSTM neural network architecture to infer heterogeneous model transformations

Abstract

Models capture relevant properties of systems. During the models’ life-cycle, they are subjected to manipulations with different goals such as managing software evolution, performing analysis, increasing developers’ productivity, and reducing human errors. Typically, these manipulation operations are implemented as model transformations. Examples of these transformations are (i) model-to-model transformations for model evolution, model refactoring, model merging, model migration, model refinement, etc., (ii) model-to-text transformations for code generation and (iii) text-to-model ones for reverse engineering. These operations are usually manually implemented, using general-purpose languages such as Java, or domain-specific languages (DSLs) such as ATL or Acceleo. Even when using such DSLs, transformations are still time-consuming and error-prone. We propose using the advances in artificial intelligence techniques to learn these manipulation operations on models and automate the process, freeing the developer from building specific pieces of code. In particular, our proposal is a generic neural network architecture suitable for heterogeneous model transformations. Our architecture comprises an encoder–decoder long short-term memory with an attention mechanism. It is fed with pairs of input–output examples and, once trained, given an input, automatically produces the expected output. We present the architecture and illustrate the feasibility and potential of our approach through its application in two main operations on models: model-to-model transformations and code generation. The results confirm that neural networks are able to faithfully learn how to perform these tasks as long as enough data are provided and no contradictory examples are given.

Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.

Keywords

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Artificial intelligence, Model transformation, Redes neuronales (Informática), Arquitectura de ordenadores, Machine learning, Code generation, Model manipulation, Neural networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!