Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Alloys and Compounds
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Li3−xMxN (M=Co, Ni) synthesized by Spark Plasma Sintering for hydrogen storage

Authors: Zhang, Junxian; Cerny, Radovan; Villeroy, Benjamin; Godart, Claude; Chandra, Dhanesh; Latroche, Michel;

Li3−xMxN (M=Co, Ni) synthesized by Spark Plasma Sintering for hydrogen storage

Abstract

Abstract Lithium nitride has recently emerged as a promising material for hydrogen storage. The hydrogen storage capacity reaches 10.2 wt% H by the formation of compounds, such as imides, amides, and others. Hydrogenation of lithium nitride is highly exothermic, and thus desorbing hydrogen from these compounds requires high temperature and cannot be used for reversible hydrogen storage. Ab initio calculations predict that partial substitution of Li by transition metals like Cu or Ni can reduce the reaction enthalpy between amide and imide. In this work, we present the synthesis of the ternary system Li 3− x M x N ( M = Co or Ni) by Spark Plasma Sintering (SPS). The samples are hydrogenated at 255 °C by solid gas reaction. The sample crystal structures have been analyzed by synchrotron X-ray powder diffraction using a high resolution powder diffractometer. The structural models for Co and Ni-substituted Li 3 N have been confirmed. The effect of the substitution on the phase formation upon hydrogenation has been investigated at various metal and hydrogen concentration. Different behaviors are observed depending on the nature of M .

Keywords

Crystal structure, Lithium nitride, SPS synthesis, Hydrogen storage, 500.2, ddc: ddc:500.2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!