
arXiv: 1907.12287
We define a theory of parameterized algebraic complexity classes in analogy to parameterized Boolean counting classes. We define the classes VFPT and VW[t], which mirror the Boolean counting classes #FPT and #W[t], and define appropriate reductions and completeness notions. Our main contribution is the VW[1]-completeness proof of the parameterized clique family. This proof is far more complicated than in the Boolean world. It requires some new concepts like composition theorems for bounded exponential sums and Boolean-arithmetic formulas. In addition, we also look at two polynomials linked to the permanent with vastly different parameterized complexity.
FOS: Computer and information sciences, Valiant’s classes, Computational Complexity (cs.CC), 004, Computer Science - Computational Complexity, parameterized complexity theory, Algebraic complexity theory, ddc: ddc:004
FOS: Computer and information sciences, Valiant’s classes, Computational Complexity (cs.CC), 004, Computer Science - Computational Complexity, parameterized complexity theory, Algebraic complexity theory, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
